Utilization of medicinal plant extracts to reduce the mosaic disease complex of chili plant

##plugins.themes.bootstrap3.article.main##

NURHAYATI DAMIRI
AHMAD RICARD FENTON
CHANDRA IRSAN
OKTAVIANI
RAHMAD FADLY
RAHMAT PRATAMA
MULAWARMAN
ARINAFRIL
SUPLI EFFENDI RAHIM

Abstract

Abstract. Damiri N, Fenton AR, Irsan C, Oktaviani, Fadly R, Pratama R, Mulawarman, Arinafril, Rahim SE. 2025. Utilization of medicinal plant extracts to reduce the mosaic disease complex of chili plant. Biodiversitas 26: 1303-1309. Viral diseases lead to substantial yield losses in chili cultivation, with the mosaic disease complex being one the most serious effects. The aim of this study was to investigate the effect of medicinal plant extracts in protecting chili plants against mosaic disease complex in the field. This research was conducted at the experimental field of the Faculty of Agriculture, Universitas Sriwijaya, Indralaya, Ogan Ilir District, South Sumatra, Indonesia. The research was desgined in a factorial randomized block. The first factor was medicinal plant extracts: A. Annona muricata leaf extract; B. Datura metel leaf extract; C. Jatropha curcas leaf extract; D. Pachyrhizus erosus leaf extract; E. Azadirachta indica leaf extract; J. control. The second factor was the interval of application time: one week (W1), two weeks (W2), and three weeks (W3). Each treatment was repeated 3 times. The extracts were sprayed at 2% concentration on chili plants. Results showed that the application of medicinal plant leaf extracts, combined with different application intervals, effectively suppresses the mosaic disease complex in chili plants. Among the treatments, extracts of D. metel and A. indica applied at two-week intervals resulted in the lowest incidence and severity of mosaic disease, both in terms of percentage and intensity. Additionally, treated plants exhibited greater fruit yield and increased plant height compared to the control group. The effectiveness of D. metel and A. indica as biopesticides is attributed to their potent bioactive compounds. Notably, applying these extracts at two-week intervals reduced mosaic disease complex attacks to just 12.02%. Further research should be conducted to optimize application methods and assess long-term effects on crop productivity.

##plugins.themes.bootstrap3.article.details##

References
Adhikari K, Bhandari S, Niraula D, Shrestha J. 2020. Use of neem (Azadiracta indica A. Juss) as a biopesticide in agriculture: A review. J Agric Appl Biol 1 (2): 100-117. DOI: 10.11594/JAAB.01.02.08.
Adusei S, Azupio S. 2022. Neem: A novel biocide for pest and disease control of plants. J Chem 2022 (1): 6778554. DOI: 10.1155/2022/6778554.
Al-Huqail AA, Nagwa M, Aref M. 2017. Physiological parameter correlated with Tomato Mosaic Virus inducing defensive response Datura metel. Saudi J Biol Sci 24 (4): 864-874. DOI: 10.1016/j.sjbs.2016.04.003.
Al-Snafi AE. 2017. A review on Dodonaea viscosa: A potential medicinal plant. IOSR J Pharm 7 (2): 10-21. DOI: 10.9790/3013-0702011021.
Andhiarto Y, Andayani R, Ilmiyah NH. 2019. Antibacterial activity test of neem leaf ethanol extract 96% (Azadiracta indica A. Juss) with percolation extraction method on growth of Staphylococcus aureus. J Pharm Sci Technol 2 (1): 102-111. DOI: 10.30649/pst.v2i1.99.
Anikina I, Kamarova A, Issayeva K, Issakhanova S, Mustafayeva N, Insebayeva M, Mukhamedzhanova A, Khan SM, Ahmad Z, Lho LH, Han H, Raposo A. 2023. Plant protection from virus: A review of different approaches. Front Plant Sci 14: 1-12. DOI: 10.3389/fpls.2023.1163270.
Chakraborty P, Ghosh A. 2022. Topical spray of dsRNA induces mortality and inhibits chili leaf curl virus transmission by Bemisia tabaci Asia Iii. Cells 11 (5): 833. DOI: 10.3390/cells11050833.
Damiri N, Mulawarman, Hamidson H, Rahim SE. 2018. Mosaic disease and chili production on different altitude in South Sumatra, Indonesia. Malays Appl Biol 47 (3): 23-28.
Damiri N. 2014. Mixed viral infection and growth stage on chili (Capsicum annuum L.) production. Pertanika 37 (2): 275-283.
Ervinatun W, Hasibuan R, Hariri AM, Wibowo L. 2018. Efficiency tests of neam leaf extract, noni leaf and babaton on the mortality of Crocidolomia larvae Zell’s binomialist in laboratory. Jurnal Agroteknologi Tropika 6 (3): 161-167. DOI: 10.23960/jat.v6i3.2924.
Faisal UM, Saifi MS, Kaish Md, Ibrahim M, Shiwani, Kwakuri SS, Arif M. 2023. Azadiracta indica (neem): An important medicinal plant: A literature review of its chemistry, biological activities, role in Covid-19 management and economic importance. J Pharmacol Phytochem 12 (6): 59-65. DOI: 10.22271/phyto.2023.v12i6a.14769.
Ferdenache M, Bezzar-Bendjazia R, Marion-Poll F, Kilani-Morakchi S. 2019. Transgenerational effects from single larval exposure to azadirachtin of life history and behavior traits of Drosophila melanogaster. Nature 9: 17015. DOI: 10.1038/s41598-019-5374-x.
Gelaye Y, Negash B. 2023. The role of baculo viruses in controlling insect pests: A review. Cogent Food Agric 9: 2254139. DOI: 10.1080/23311932.2023.2254139.
Hamidson H, Damiri N, Angraini E. 2017. Effect of medicinal plants extract on the incidence of mosaic disease cause by cucumber mosaic virus and growth of chili. IOP Conf Ser: Earth Environ Sci 102 (1): 012062. DOI: 10.1088//1755-1315/102/1/012062.
Haruna Y, Muhammad A, Birnin-Yauria AU, Sanda AR, Olutoyo OO. 2020. Effect of organic fertilizer produced from agricultural waste on the growth rate and yield of maize. Am J Appl chem 8 (5): 126-129. DOI: 10.11648/j.ajac.20200805.12.
Javandira C, Yuniti IGAD, Widana IG. 2022. The effect of neem leaf pesticide on mortality of Aphids (Aphis craccivora Koch.) on long bean plant. Agro Bali 5 (3): 485-491. DOI: 10.37637/ab.v5i3.998.
Kabera JN, Semana E, Mussa AR, He X. 2014. Plant secondary metabolites: Biosynthesis, classification, function and pharmacological properties. J Pharm Pharmacol 2 (7): 399-392.
Krenz B, Neehl A, Krczal. 2014. Emerging strategies in plant virus disease control: Insights from the 56th meeting of the DPG working group “Viruskrankeiten der Pflanzen”. J Plant Dis Protec 131: 1761-1768. DOI: 10.1007/s41348-024-00992-0.
Kurnia TD, Purwantoro A, Sulandari S, Basunanda P, Setiawan AB, Fatmawati Y, Andika IP. 2022. Molecular and morpho-physiological identification of yellow leaf curl disease of cucumber in Salatiga, Indonesia. Biodiversitas 23 (3): 1466-1474. DOI: 10.13057/biodiv/d230334.
Lengai GMW, Muthomi JW, Mbega ER. 2020. Phytochemical activity and role of botanical pesticides in pest management for sustainable agricultural crop production. Sci Afr 7: e00239. DOI: 10.1016/scif2019.e00239.
Mandanayake MARA, Sirisena UGAI, Nawarathne NMUPR, Nadeeshani SMAO, Sandaruwani PAI, Nayanajeewa RARS. 2023. Efficacy on Derris parviflora leaf extract againts sucking pests of chili (Capcicum annum L.) as a potential botanical pesticide. Ann Sri Lanka Agric 25: 77-85.
Marasinghe J, Karunaratne SHPP. 2021. Evaluation of insecticide resistance and underlying resistance mechanisms in selected whitefly populations in Sri Lanka. J Natl Sci Found Sri Lanka 49 (4): 469-478. DOI: 10.4038/jnsfsr.v49i4.10312.
Meena RP, Manivel P. 2018. First report of cucumber mosaic virus infecting antamul vine (Tylophora indica) in India. Virus Dis 30 (2): 319-320. DOI: 10.1007/s13337-018-0501-1.
Mendez C, Iturriaga-Vasquez P, Hormazabal E. 2021. Secondary metabolites and biological profiles of Datura genus. J Chil Chem Soc 66 (2): 5183-5189. DOI:10.4067/S0717-97072021000205183.
Ngegba PM, Cui G, Khalid MZ, Zhong G. 2022. Use of botanical pesticides in agriculture as an alternative to synthetic pesticides. Agriculture 12 (5): 600. DOI: 103390/agriculture12050600.
Niraula PM, Fondong VN. 2021. Development and adoption of genetically engineered plants for virus resistance: Advances, opportunities and challenges. Plants 10 (11): 2339. DOI: 10.3390/plants10112339.
Oney MJE, Morozova K, Ferrentino G, Sucre MOR, Buenfil IMR, Scampicchio M. 2021. Effects of local environmental factors on the spiciness of habanero chili peppers (Capsicum chinense Jacq.) by coulometric electronic tangue. Eur Food Res Technol 247: 101-110. DOI: 10.1007/s00217-020-03610-z.
Rahman J, Kadir M, Yasmine M, Shikha FS, Ahsan N. 2023. Effect of variety and planting time of year-round chili production. Food Agribus Manag 4 (1): 16-18. DOI: 10.26480/fabm.01.2023.16.18.
Rami E, Singh A, Favzulazim S. 2021. An overview of plant secondary metabolites, their biochemistry and generic applications. J Phytopharmacol 10 (5): 421-428. DOI: 10.31254/phyto.2021.10523.
Romao ALE, Abreu KVA, Fontenelle ROS, Silva ALB, Alves CR. 2023. Metabolic profile, antimicrobial and toxicity of Azadiracta indica roots. Cienc Rural 53 (5). DOI: 10.1590/0103-8478cr20210683.
Saha S, Walia S, Kumar J, Parmar BS. 2010. Triterpenic saponins as regulator of plant growth. Appl Bot Food Qual 8: 189-195.
Sani I, Ismail SI, Abdullah S, Jalinas J, Jamian S, Saad N. 2020. A review of biology and control of whitefly, Bemisia tabaci (Hemiptera: Aleyrodidae), with special reference to biological control using entomopathogenic fungi. Insects 11 (9): 619. DOI: 10.3390/insects11090619.
Shiberu T, Getu E. 2017. Effects of crude extracts of medicinal plants in the management of Tuta absoluta (Meyrick) (Lepidoptera: Gelechuudae) under laboratory and glasshouse condition in Ethiopia. J Entomol Nematol 9 (2): 9-13. DOI: 10.5897/JEN2017.0169.
Soraya C, Sunnati, Wulandari. 2019. Antibacterial effect of neem leaf extract (Azadirachta indica) on the growth of Enterococcus faecalis in vitro. Cakradonya 11 (1): 23-32. DOI: 10.24815/cdj.vllil.13624.
Sudhashini S, Amudha P, Vidya R, Rani V, Kumar RS. 2023. Phytochemical screening and profiling of secondary metabolites of Annona Muricata Bark. J Adv Zool 44 (4): 329-339. DOI: 10.17762/jaz.v44i4.1685.
Sukada IW, Sudana IM, Nyana IDN, Suastika G, Siasi K. 2014. Effect of virus infection of some type of the decline in yield on plant cayenne (Capsicum frustescens L.). Jurnal Agroekoteknologi Tropika 3 (3): 158-165.
Suwandi A, Irsan C, Muslim A, Herlinda S. 2020. Protection of chili pepper from mosaic virus disease and Aphis gossypii by a fermented water extract of compost. IOP Conf Ser Earth Environ Sci 468 (1): 012043. DOI: 10.1088/1755-1315/468/1/012043.
Thomas JE, Gronenborn B, Harding RM, Mandal B, Grigoras I, Randles JW, Sano Y, Timchenko T, Vetten HJ, Yeh H, Ziebell H. 2021. ICTV virus taxonomy profile: Nanoviridae. J Gen Virol 102 (3): 001544. DOI: 10.1099/jgv.0.001544.
Ummah KK, Noli Z Bakhtiar A, Mansyurdin. 2017. Test of certain plants crude extract on growth of upland rice (Oryza sativa L.). Intl J Curr Res Biosci Plant Boil 4 (9): 1-6. DOI: 10.20546/IJCRBP.2017.409.001.
Wang H, Chen Q, Wei T. 2023. Complex interactions among insect viruses-insect vector-arboviruses. Insect Sci 31 (3): 683-693. DOI: 10.1111/1744-7917.13285.
Yadav RK, Reddy KM, Ashwathapapa KV, Kumar M, Naresh P, Reddy MK. 2022. Screening of Capsicum germplasm and inheritance of resistance to chili leaf curl virus. Indian Phytopathol 75: 1129-1136. DOI: 10.1007/s42360-022-00530-8.
Zehra SB, Ahmad A, Sharma A, Sofi S, Lateef A, Bashir Z, Husain M, Rathore JP. 2017. Chili leaf curl virus an emerging threat to chili in India. Intl J Pure Appl Biosci 5 (5): 404-414. DOI: 10.18782/2320-7051.5471.
Zhan H, Huang Y, Lin Z, Bhatt P, Chen S. 2020. New insights into the microbial degradation and catalytic mechanism of synthetic pyrethroids. Environ Res 182: 109138. DOI: 101016/j.envres.2020.109138.
Zhang W, Lin Z, Pang S, Bhatt P. Chen S. 2020. Insight into the biodegradation of lindane (y-hexachorocyclohexane) using a microbial system. Front Microbiol 11: 522. DOI: 10.3389/fmicb.2020.00522.
Zohoungbogbo HPF, Vihou F, Archigan-Dako E, Barchenger DW. 2024. Current knowledge and breeding strategies for management of aphid-transmitted viruses of pepper (Capsicum spp.) in Africa. Front Plant Sci 15:1449889. DOI: 10.3389/fpls.2024.1449889.

Most read articles by the same author(s)

1 2 3 > >>