Methylene blue decolorization fungi from crude oil contaminated soils




Abstract. Permana I, Awaluddin A, Saryono. 2019. Methylene blue decolorization fungi from crude oil-contaminated soils. Biodiversitas 20: 2693-2697. One of the world problems is the treatment to remove dyes in textile wastewater. Nowadays, the most effective and compatible method to the environment is decolorization by microorganisms. Therefore, the objective of this study is to find out the best fungi to decolorize synthetic dye methylene blue (MB). Total eight fungi that isolated from crude oil-contaminated soil were analyzed to study the effect of various parameters such as pH, the concentration of dyes, contact times and agitation on their rate of reaction. The initial screening showed that Penicillium sp. FTM7 had greater potential in biodegradation the MB. The optimum decolorization of MB by Penicillium sp. was found after 8 days incubation with agitation 150 rpm and concentration of MB is 40 ppm and unadjusted pH (95.45%). The decolorization of MB was found to follow first-order reactions.


Al-Jawhari IFH. 2015. Decolorization of methylene blue and crystal violet by some filamentous fungi. Science & Education Publishing 3(2): 62-65.
Buntic A V, Pavlovic MD, Antonovic DG, Siler-Marinkovic SS, Dimitrijevic SI. 2017. Treatment of wastewater containing basic dyes by the use of new strain Streptomyces microflavus CKS6. Cleaner Production.
Chakraborty S, Bask b, Dutta S, Bhunia B, Dey A. 2013. Decolorization and biodegradation of Congo red dye by a novel white rot fungus Alternaria alternata CMERI F6. Bioresource Technology 147: 662666.
Chang J, Saratale RG, Saratale GD, Chang JS, Govindwar SP. 2017. Decolorization and biodegradation of textile dye Navy blue HER by Trichosporon beigelii NCIM-3326. Journal of Hazardous Materials 166: 1421-1428.
Chen SH, Su A, Ting Y. 2015. Biosorption and biodegradation potential of triphenylmethane dyes by newly discovered Penicillium simplicissimum isolated from indoor wastewater sample. International Biodeterioration & Biodegradation 103: 1-7.
Daâssi D, Mechichi T, Nasri M, Rodriguez-couto S. 2013. Decolorization of the metal textile dye lanaset grey G by immobilized white-rot fungi. Journal of Environmental Management. 129: 324-332.
Forootanfar H, Moezzi A, Aghaie-khozani M, Mahmoudjanlou Y, Ameri A, Niknejad F, Faramarzi MA. 2012. Synthetic dye decolorization by three sources of fungal laccase. Iranian J Environ Health Sci Eng. 9(1): 1-10.
Hazrat A. 2010. Biodegradation of synthetic dyes A Review. Water Air Soil Pollut. 213: 251-273.
Heyse C, Knoll A, Schadeck R, Mitchell DA, Kava-cordeiro V, Paba J. 2010. Decolorization and biodegradation of reactive blue 220 textile dye by Lentinus crinitus extracellular extract. J Hazard Mater. 180(1-3): 316-322.
Irpex I, Tav?ar M, Kuplenk J, Pavko A. 2006. Biodegradation of azo dye RO16 in different reactors by immobilized Irpex lacteus. Acta Chim. Slov. 53: 338-343.
Kamal R, Babu V, Philip L, Ramanujam S. 2016. Applicability of pulsed power technique for the degradation of methylene blue. Journal of Water Process Eng. 11:118-129.
Kumar S, Raut S, Bandyopadhyay P. 2016. Fungal decoloration and degradation of azo dyes: A Review. Fungal Biology Reviews: 1-22.
Menezes S, Almeida S, Sussuchi EM, Roberto P, Vi A, Marino RH. 2017. Bioremediation potential of filamentous fungi in methylene blue: solid and liquid culture media. Lavras. 41(5): 526-532.
Nor NM, Hadibarata T, Mohd M, Ahmad F. 2015. Mechanism of triphenylmethane cresol red degradation by trichoderma harzianum M06. Bioprocess Biosyst Eng. 38: 2167-2175.
Park C, Lee M, Lee B, Kim S, Chase HA, Lee J, Kim S. 2006. Biodegradation and biosorption for decolorization of synthetic dyes by Funalia trogii. Biochemical Engineering Journal 36: 59-65.
Ramamurthy V, Umamaheswari G, Nadu T, Nadu T. 2013. Biodegradation of synthetic dyes by aspergillus terreus inoculated on solid media. International Journal of Innovative Research in Science, Engineering and Technology 2(12): 7821-7827.
Saryono, Firiani, Soedjanaatmadja U. 2016. Beberapa mirkoorganisme yang menghasilkan enzim inulinase, isolasi dan karakterisasi enzim dari aspergillus flavus gmn 11.2 galur lokal. Chem Nat Acta. 4: 165-174.
Sari EM. 2017. Uji Efektivitas Jamur Indigenus Pendegradasi Hidrokarbon Minyak Bumi Yang Diisolasi Dari Tanah Tercemar Tumpahan Minyak Bumi. [Thesis]. Riau University, Pekanbaru. [Indonesian].
Saroj S, Kumar K, Pareek N, Prasad R, Singh RP. 2013. Biodegradation of azo dyes acid red 183, direct blue 15 and direct red 75 by the isolate Penicillium oxalicum SAR-3. Chemosphere: 1-9.
Sh. M H. 2008. Biodegradation of the reactive and direct dyes using egyptian isolates. Journal of Applied Sciences Research 4(6): 599-606.
Shanmugam S, Ulaganathan P. 2017. Enhanced biodegradation and detoxification of malachite green by trichoderma asperellum laccase: Degradation pathway and product analysis. International Biodeterioration & Biodegradation: 1-11.
Sharma P, Singh L, Dilbaghi N. 2009. Biodegradation of Orange II dye by Phanerochaete chrysosporium in simulated wastewater. Journal of Scientific & Industrial Research 68: 157-161.
Sivasamy A, Sundarabal N. 2011. Biosorption of an azo dye by aspergillus niger and trichoderma sp. fungal biomasses. Curr Microbiol 62: 351-357.
Sumerta IK, Wijaya K, Tahir I. 2002. Fotodegradasi metilen biru menggunakan katalis Ti-O2 montmorilonit dan sinar UV.
Yu Z, Wen X. 2005. Screening and identification of yeasts for decolorizing synthetic dyes in industrial wastewater. International Biodeterioration & Biodegradation 56:109-114.
Zulfa Z, Absus S, Awaluddin A, Anita S, Siregar SS, Zulfikri. 2018. Effect of precursors on morphology and catalytic activities of binnersite for methylene blue deradation. Journal of Physics: Conference Series 1097: 1-9.