Growth and fosE gene expression in inulin-containing medium of two strains of Lactobacillus casei originated from the human intestinal tract

##plugins.themes.bootstrap3.article.main##

AMIK CHOIRUL AFIDAH
TUTIK DWI WAHYUNINGSIH
WIDODO

Abstract

Abstract. Authors. 2019. Growth and fosE gene expression in inulin-containing medium of two strains of Lactobacillus casei originated from the human intestinal tract. Biodiversitas 20: 2758-2763. Inulin is a fructooligosaccharide consisting of a fructose monomer with ?- (1,2) glycosidic linkage. The human colon cannot degrade inulin because it lacks the enzyme that degrades ?- (1,2) glycosidic linkage. Lactobacillus casei strain AP is able to grow in inulin, L. casei strain AF grows gradually. The ability to grow in inulin is proposed by the fosE gene, which hydrolyzes ?- (1,2) glycosidic linkage. The present study aimed to detect and measure fosE gene expression in inulin. Extracellular and intracellular inulin and fructose concentrations were calculated using high-performance liquid chromatography. The reduction of inulin concentration in L. casei strain AP was higher than that in L. casei strain AF. Extracellular fructose concentration was lower in L. casei strain AP because fructose from inulin degradation was transported into the cell. No fructose was detected inside Lactobacillus cells. The fosE gene was detected in L. casei strains AP and AF with a length of 229 bp. fosE gene expression was up-regulated 5.9-fold in L. casei strain AP and 1.7-fold in L. casei strain AF and was three times higher in L. casei strain AP than that in L. casei strain AF, suggesting that the former metabolizes inulin better than the latter.

##plugins.themes.bootstrap3.article.details##

References
Aditiyarini D. 2016. Identifikasi Protein yang Berperan dalam Metabolisme Inulin pada Lactobacillus casei strain Asal Saluran Pencernaan. Universitas Gadjah Mada.
Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR. 2003. Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci. 100(15):8957-8962. doi:10.1073/pnas.1332765100.
Barrangou R, Azcarate-peril MA, Duong T, Conners SB, Kelly RM, Klaenhammer TR. 2006. Global analysis of carbohydrate utilization by Lactobacillus acidophilus using cDNA microarrays.
Boger MCL, van Bueren AL, Dijkhuizen L. 2018. Cross-feeding among probiotic bacterial strains on prebiotic inulin involves the extracellular exo-inulinase of Lactobacillus paracasei strain W20. Appl Environ Microbiol. 84(21):1-35. doi:10.1128/AEM.01539-18.
Buntin N, Hongpattarakere T, Ritari J, Douillard FP, Paulin L, Boeren S, Shetty SA, de Vos WM. 2017. An Inducible Operon Is Involved in Inulin Utilization in Lactobacillus plantarum Strains, as Revealed by Comparative Proteogenomics and Metabolic Profiling. Appl Environ Microbiol. 83(2):1-13. doi:10.1128/aem.02402-16.
Denta. 2018. Pengaruh Produk Susu Fermentasi Probiotik Lactobacillus casei Strain AP Terhadap Kadar Glukosa dan Profil Lipid Darah Individu Obese. Universitas Gadjah mada.
Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx APA, Lebeer S, et al. 2009. Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci. 106(40):17193-17198. doi:10.1073/pnas.0908876106.
Kaplan H, Hutkins RW. 2003. Metabolism of Fructooligosaccharides by. Society. 69(4):2217-2222. doi:10.1128/AEM.69.4.2217.
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, et al. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci. 100(4):1990–1995. doi:10.1073/pnas.0337704100.
Kuzuwa S, Yokoi K ji, Kondo M, Kimoto H, Yamakawa A, Taketo A, Kodaira KI. 2012. Properties of the inulinase gene levH1 of Lactobacillus casei IAM 1045; cloning, mutational and biochemical characterization. Gene. 495(2):154-162. doi:10.1016/j.gene.2011.12.004.
Makras L, Acker G Van, Vuyst L De. 2005. Lactobacillus paracasei subsp. paracasei 8700?: 2 Degrades Inulin-Type Fructans Exhibiting Different Degrees of Polymerization. 71(11):6531-6537. doi:10.1128/AEM.71.11.6531.
Petrov K, Popova L, Petrova P. 2017. High lactic acid and fructose production via Mn2+-mediated conversion of inulin by Lactobacillus paracasei. Appl Microbiol Biotechnol. 101(11):4433-4445. doi:10.1007/s00253-017-8238-0.
Petrova P, Velikova P, Popova L, Petrov K. 2015. Bioresource Technology Direct conversion of chicory flour into L (+) -lactic acid by the highly effective inulinase producer Lactobacillus paracasei DSM 23505. Bioresour Technol. 186:329-333. doi:10.1016/j.biortech.2015.03.077.
Velikova P, Petrov K, Petrova P. 2017. The cell wall anchored ? -fructosidases of Lactobacillus paracasei?: Overproduction, purification, and gene expression control. Process Biochem. 52:53-62. doi:10.1016/j.procbio.2016.10.010.
Wang J, Wu R, Zhang W, Sun Z, Zhao W, Zhang H. 2013. Proteomic comparison of the probiotic bacterium Lactobacillus casei Zhang cultivated in milk and soy milk. J Dairy Sci. 96(9):5603–5624. doi:10.3168/jds.2013-6927.
Widodo, Aditiyarini D, Wahyuningsih TD. 2017. Identification of Bacterial Proteins Involved in Inulin Metabolism from Colon-derived Lactobacillus Casei Strains. Pakistan J Biotechnol. 14(3):303-311.

Most read articles by the same author(s)