Variation of axillary growth as respond of Morus spp. micropropagation using various concentration of Indonesian local solid substance




Abstract. Wulandari YRE, Anggradita LD. 2020. Variation of axillary growth as respond of Morus spp. micropropagation using various concentrations of Indonesian local solid substance. Biodiversitas 21: 80-85. The difficulties of growing Morus spp. makes it become one local plant that hard to cultivate conventionally even though it’s a beneficiary plant. Hence cultivation Morus spp. through tissue culture technique could help growing this plant. This research is aimed to design the optimal condition for micropropagation of local Morus spp. (Morus bombycis var. lembang, M. cathayana, M. multicaulis, and M. alba var. kanva-2) using agar-agar as Indonesian local solid substance. This solid substance is used as its cheap and easy to find compared to other solid substances. This research used MS medium supplemented with 0.1 ppm naphthalene acetic acid + 1.0 ppm benzyl aminopurine and various concentration of agar-agar (0.6%, 0.8%, 1.0%). Growth rate, axillary bud length and number, leaf number, callus formation and contamination were observed in this research. All those concentrations could be used for micropropagation of Morus spp. Agar concentrations of 0.8 and 1.0% showed better results than 0.6% because it showed the highest results.


Aga E, Khillare Y. 2017. In vitro regeneration of shoots from apical and auxiliary bud explants of Coffea arabica L.. Journal of Medicinal Plants Studies 5(1): 9-12.
Agustiansyah. 2002. Studi perbanyakan tanaman strawberi (Fragaria ananassa Duch) secara in vitro. [Thesis]. Universitas IPB, Bogor. [Indonesian]
Anggraini YP. 2015. Mikropropagasi empat spesies murbei (Morus spp.) pada berbagai konsentrasi Benzyl Amino Purine [Thesis]. Universitas Katolik Indonesia Atma Jaya, Jakarta. [Indonesian]
Anis M. Faisal M, Singh SK. 2003. Micropropagation of mulberry (Morus alba L.) through in vitro culture of shoot tip and nodal explants. Plant Tissue Culture 13(1): 47-51.
Badr-Elden AM, Nower AA, Ibrahim IA, Ebrahim MKH, Elaziem TMA. 2012. Minimizing the hyperhydricity associated with in vitro growth and development of watermelon by modifying the culture conditions. African Journal of Biotechnology 11(35): 8705-8717.
Buah JN, Kawamitsu Y, Sato S, Murayama S. 1999. Effects of different types and concentrations of gelling agents on the physical and chemical properties of media and the growth of banana (Musa spp.) in vitro. Plant Production Science 2(2): 138-145.
Diego ND, Montalban IA, Moncalean P. 2010. In vitro regeneration of adult Pinus sylvestris L. trees. South African Journal of Botany 76(2010): 158-162.
Gogoi G, Borua P, Al-Khayri JM. 2017. Improved micropropagation and in vitro fruiting of Morus indica L. (K-2 cultivar). Journal of Genetic Engineering and Biotechnology 15(1): 249-256.
Huh YS, Lee JK, Nam SY. 2017. Improvement of ex vitro acclimatization of mulberry plantlets by supplement of abscisic acid to the last subculture medium. Journal Plant Biotechnology 44: 431-437.
Jain N, Bairu MW, Stirk WA, Van Staden J. 2009. The effect of medium, carbon source and explant on regeneration and control of shoot-tip necrosis in Harpagophytum procumbens. South African Journal of Botany 75(2009): 117-121.
Kasim NFM, Yahya HN, Kadzimin S, Awang Y. 2017. Micropropagation and assessment of genetic variability of Cyclanthus bipartitus. Asian Journal of Plant Science 17(1): 19-26.
Molsaghi M, Moieni A, Kahrizi D. 2014. Efficient protocol for rapid Aloe vera micropropagation. Pharmaceutial Biology 52(6): 735-739.
Navroski MC, Reiniger LRS, Araujo MM, Curti AR, Pereira MDO. 2014. In vitro establishment and multiplication of genotypes of Eucalyptus dunnii maiden. Cerne 20(1): 139-146
Ngezahayo F, Liu B. 2014. Axillary bud proliferation approach for plant biodiversity conservation and restoration. International Journal of Biodiversity 2014: 1-9.
Petrovski S, Tillett D. 2012. Back to the kitchen: food-grade agar is a low-cost alternative to bacteriological agar. Analytical Biochemistry 429(2): 140-141.
Praiboon J, Chirapart A, Akakabe Y, Bhumibhamon O, Kajiwara T. 2006. Physical and chemical characterization of agar polysaccharides extracted from the Thai and Japanese species of Gracilaria. ScienceAsia 32(1): 11-17.
Priadi D, Fitriani H, Sudarmonowati E. 2008. Pertumbuhan in vitro tunas ubi kayu (Manihot esculenta crantz) pada berbagai bahan pemadat alternatif pengganti agar. Biodiversitas 9(1): 9-12.
Reddy SH, Chakravarthu M, Chandrashekara KN. 2012. In vitro multiple shoot induction through axillary bud of Asclepias curassavica L. - a valuable medicinal plant. International Journal of Scientific and Research Publications 2(8): 1-7.
Renau-Morata B, Ollero J, Arrillaga I, Segura J. 2005. Factors influencing axillary shoot proliferation and adventitious budding in cedar. Tree Physiology 25(4): 477-486.
Shende CB, Manik SR. 2015. Direct regeneration of shoot from axillary bud of Citrus reticulate. International Journal of Agricultural Technology 11(6): 1401-1409.
Sulusoglu M. 2014. Effects of agar types on rooting performance in tissue culture: sample of quince a rootstock cultures. Turkish Journal of Agricultural and Natural Sciences 1: 957-963.
Tuigong DR, Kipkurgat TK, Madara DS. 2015. Mulberry and silk production in Kenya. International Journal of Advanced Research 3(9):470-481.
Vijayan K, Tikader A, da Silva JAT. 2011. Application of tissue culture techniques for propagation and crop improvement in mulberry (Morus spp.). Tree and Forestry Science and Biotechnology 5(1): 1-13.
Wulandari YRE, Prasasty VD, Rio A, Geniola C. 2019. Determination of 1-deoxynojirimycin content and phytochemical profiles of young and mature mulberry leaves of Morus spp. OnLine Journal of Biological Sciences 19(2): 124-131. DOI: 10.3844/ojbsci.2019.124.131.
Yelli F. 2013. Induksi pembentukan kantong dan pertumbuhan dua spesies tanaman kantong semar (Nepenthes spp.) pada berbagai konsentrasi media MS secara in vitro. Agrotropika 18(2): 56-62.