Antibiotics resistant Escherichia coli isolated from aquatic ecosystems in Palembang, South Sumatra, Indonesia

##plugins.themes.bootstrap3.article.main##

MARIESKA VERAWATY
NITA APRIANI
LELY RASTI TARIGAN
ENDAH TRI APRIAN
WEMONA CHARISSA LAURENTA
MUHARNI

Abstract

Abstract. Verawaty M, Apriyani N, Tarigan LR, Apriyan ET, Laurenta WC, Apriani N, Muharani. 2020. Antibiotics resistant Escherichia coli isolated from aquatic ecosystems in Palembang, South Sumatra, Indonesia. Biodiversitas 21: 86-97. Antibiotics-resistant bacteria (ARB) are one of the emerging water contaminants currently gaining serious global concern due to their adverse risk to ecosystems, wildlife, and public health. This study determined antibiotics resistant Escherichia coli isolated from aquatic ecosystems in Palembang. Most probable number (MPN) was used for bacterial estimation and the Kirby-Bauer method was used for susceptibility test against antimicrobial agents. The results indicated that 82% of E. coli isolates from 28 sampling sites were resistant to ampicillin, 57% to tobramycin, and 71% to tetracycline. The isolates showed intermediate profile to kanamycin (50%), 57% to cotrimoxazole, 50% to cefixime, and 54% to gentamycin. These isolates still showed sensitivity towards ciprofloxacin (86%) and chloramphenicol (61%). Total coliform (TC) numbers ranged from 0 to >1600 MPN/100 mL. Sampling sites with high MPN values of ?1600 MPN/100 mL were Sekanak watersheds (SW1, SW8, SW11, SW12, SW13, and SW14) followed by SW2 and SW9 with a value of 1600 MPN/100 mL, while samples from cattle and fish farms (CW) varied from 0 to 170.000 MPN/100 mL. TC of samples collected from retention ponds (RP) ranged from 0 (RPJSC) to 1.600.000 MPN/100 mL (RPSH3). The Escherichia coli (EC) counts varied from 1.7 x 103 (RPSH2) to ?1.6 × 104 MPN/100 mL (SW11, SW12, SW13, and SW14). Several samples (SW3, RPPI, RPTS, RPSB, RPIBA, and RPOPI) have no E. coli. The results indicated some of the sampling locations that exceeds the quality standard of water have been regulated by the Governor of South Sumatra and the Indonesian Government.

##plugins.themes.bootstrap3.article.details##

References
Adegoke, A.A., Faleye, A.C., Singh, G., Stenström, T.A., 2017. Antibiotic resistant superbugs: Assessment of the interrelationship of occurrence in clinical settings and environmental niches. Molecules 22. doi:10.3390/molecules22010029
Adzitey, F., Nafisah, S., Haruna, A., 2015. Antibiotic Susceptibility of Escherichia coli Isolated from some Drinking Water Sources in Tamale Metropolis of Ghana.
Akter, F., Hossain, M.M., Rahman, A., Shaha, M., Amani Ael, A., 2012. Antimicrobials resistance pattern of Escherichia coli collected from various pathological specimens. Pakistan J. Biol. Sci. 15, 1080.
Alhaj, N., Mariana, N.S., Raha, A.R., Ishak, Z., 2007. Prevalence of antibiotic resistance among Escherichia coli from different sources in Malaysia. Int. J. Poult. Sci. 6, 293–297.
Ali, S.Q., Zehra, A., Naqvi, B.S., Shah, S., Bushra, R., 2010. Resistance pattern of ciprofloxacin against different pathogens. Oman Med. J. 25, 294–298. doi:10.5001/omj.2010.85
AMRIN study group, 2005. Antimicrobial resistance, antibiotic usage Indonesian, and infection control. A self-assessment program for hospitals.
Anderson, E.S., 1968. The ecology of transferable drug resistance in the enterobacteria. Annu. Rev. Microbiol. 22, 131–180.
Andrews, J.M., 2001. Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5–16.
APHA, 1995. Standard Methods for the examination of water and wastewater. American Public Health Association, Washington DC.
Arshad, H.M., Mohiuddin, O.A., Azmi, M.B., 2012. Comparative in vitro antibacterial analysis of different brands of cefixime against clinical isolates of Staphylococcus aureus and Escherichia coli. J. Appl. Pharm. Sci. 2, 109–113.
Ayatollahi, J., Shahcheraghi, S.H., Akhondi, R., Soluti, S., 2013. Antibiotic Resistance Patterns of Escherichia coli Isolated from Children in Shahid Sadoughi Hospital of Yazd. Iran. J. Pediatr. Hematol. Oncol. 3, 78–82.
Ballantyne, C., 2007. Strange but True: Antibacterial Products May Do More Harm Than Good Antibacterial soaps and other cleaners may actually be aiding in the development of superbacteria. [WWW Document]. www.scientificamerican.com. URL https://www.scientificamerican.com/article/strange-but-true-antibacterial-products-may-do-more-harm-than-good/
Baquero, F., Martinez, J.-L., Cantón, R., 2008. Antibiotics and antibiotic resistance in water environments. Curr. Opin. Biotechnol. 19, 260–265.
Baudry-Simner, P.J., Singh, A., Karlowsky, J.A., Hoban, D.J., Zhanel, G.G., 2012. Mechanisms of reduced susceptibility to ciprofloxacin in Escherichia coli isolates from Canadian hospitals. Can. J. Infect. Dis. Med. Microbiol. 23, 60–64.
Boyd, C. E., 1992. Water quality management for pond fish culture, 1st ed. Elsevier, Amsterdam.
Campoli-Richards, D.M., Monk, J.P., Price, A., Benfield, P., Todd, P.A., Ward, A., 1988. Ciprofloxacin. Drugs 35, 373–447. doi:10.2165/00003495-198835040-00003
Cheng, G., Hu, Y., Yin, Y., 2012. Functional screening of antibiotic resistance genes from human gut microbiota reveals a novel gene fusion. FEMS Microbiol. Lett. 336, 11–16. doi:10.1111/j.1574-6968.2012.02647.x
Cho, S., Hiott, L.M., Barrett, J.B., McMillan, E.A., House, S.L., Humayoun, S.B., Adams, E.S., Jackson, C.R., Frye, J.G., 2018. Prevalence and characterization of Escherichia coli isolated from the upper oconee watershed in Northeast Georgia. PLoS One 13, 1–15. doi:10.1371/journal.pone.0197005
CLSI, 2012. Performance Standards for Antibiotic Disk Susceptibility Tests: Approved Standard, 11th ed. CLSI, Wayne PA.
CLSI, 2010. Performance Standards for Antimicrobial Susceptibility Testing, Twenty-Second Informational Supplement [WWW Document]. URL https://clsi.org/
Edge, T.A., Hill, S., 2005. Occurrence of antibiotic resistance in Escherichia coli from surface waters and fecal pollution sources near Hamilton, Ontario. Can. J. Microbiol. 51, 501–505. doi:10.1139/w05-028
EUCAST, 2003. Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. ESCMID, C. 9, 1–7.
Fernandes, B, A, M., 2013. Studi Penggunaan Antibiotik Tanpa Resep di Kabupaten Manggarai dan Manggarai Barat–NTT. J. Ilm. Mhs. Univ. Surabaya. 2, 1–17.
Gillings, M.R., 2013. Evolutionary consequences of antibiotic use for the resistome, mobilome, and microbial pangenome. Front. Microbiol. 4, 1–10. doi:10.3389/fmicb.2013.00004
Gorbach, S.L., 2001. Antimicrobial use in animal feed—time to stop.
Grabow, W.O.K., Prozesky, O.W., Smith, L.S., 1974. Drug resistant coliforms call for review of water quality standards. Water Res. 8, 1–9.
Guo, M.-T., Yuan, Q.-B., Yang, J., 2015. Distinguishing effects of ultraviolet exposure and chlorination on the horizontal transfer of antibiotic resistance genes in municipal wastewater. Environ. Sci. Technol. 49, 5771–5778.
Gutiérrez, I.R., Watanabe, N., Harter, T., Glaser, B., Radke, M., 2010. Effect of sulfonamide antibiotics on microbial diversity and activity in a Californian Mollic Haploxeralf. J. Soils Sediments 10, 537–544. doi:10.1007/s11368-009-0168-8
Guyomard-Rabenirina, S., Dartron, C., Falord, M., Sadikalay, S., Ducat, C., Richard, V., Breurec, S., Gros, O., Talarmin, A., 2017. Resistance to antimicrobial drugs in different surface waters and wastewaters of Guadeloupe. PLoS One 12, 1–17. doi:10.1371/journal.pone.0173155
Hadi, U., Kuntaman, K., Qiptiyah, M., Paraton, H., 2013. Problem of Antibiotic Use and Antimicrobial Resistance in Indonesia: Are We Really Making Progress? Indones. J. Trop. Infect. Dis. 4, 5. doi:10.20473/ijtid.v4i4.222
Holmberg, S.D., Solomon, S.L., Blake, P.A., 1987. Health and economic impacts of antimicrobial resistance. Rev. Infect. Dis. 9, 1065–1078.
Jain, A., 2019. Antibiotic resistant bacteria found in river water [WWW Document]. The Hidubussinessline. URL https://www.thehindubusinessline.com/news/science/antibiotic-resistant-bacteria-found-in-river-water/article26570260.ece
Karlowsky, J.A., Jones, M.E., Thornsberry, C., Friedland, I.R., Sahm, D.F., 2003. Trends in antimicrobial susceptibilities among Enterobacteriaceae isolated from hospitalized patients in the United States from 1998 to 2001. Antimicrob. Agents Chemother. 47, 1672–1680.
Khan, G.A., Berglund, B., Khan, K.M., Lindgren, P.E., Fick, J., 2013. Occurrence and Abundance of Antibiotics and Resistance Genes in Rivers, Canal and near Drug Formulation Facilities - A Study in Pakistan. PLoS One 8, 4–11. doi:10.1371/journal.pone.0062712
Kibret, M., Abera, B., 2011. Antimicrobial susceptibility patterns of E. coli from clinical sources in northeast Ethiopia. Afr. Health Sci. 11, 40–45.
Kozak, G.K., Boerlin, P., Janecko, N., Reid-Smith, R.J., Jardine, C., 2009. Antimicrobial resistance in escherichia coli isolates from Swine and wild small mammals in the proximity of swine farms and in natural environments in Ontario, Canada. Appl. Environ. Microbiol. 75, 559–566. doi:10.1128/AEM.01821-08
Kumar, K., C. Gupta, S., Chander, Y., Singh, A.K., 2005. Antibiotic Use in Agriculture and Its Impact on the Terrestrial Environment. Adv. Agron. 87, 1–54. doi:10.1016/S0065-2113(05)87001-4
Lawrence, J.G., Ochman, H., 1998. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. 95, 9413–9417.
Levy, S.B., 1998. The challenge of antibiotic resistance [see comments]. Sci Am 278, 46–53.
Li, D., Zeng, S., He, M., Gu, A.Z., 2016. Water disinfection byproducts induce antibiotic resistance-role of environmental pollutants in resistance phenomena. Environ. Sci. Technol. 50, 3193–3201.
Li, J., Cheng, W., Xu, L., Strong, P.J., Chen, H., 2015. Antibiotic-resistant genes and antibiotic-resistant bacteria in the effluent of urban residential areas, hospitals, and a municipal wastewater treatment plant system. Environ. Sci. Pollut. Res. 22, 4587–4596.
Li, Y.X., Zhang, X.L., Li, W., Lu, X.F., Liu, B., Wang, J., 2013. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ. Monit. Assess. 185, 2211–2220. doi:10.1007/s10661-012-2702-1
Luo, Y., Wang, Q., Lu, Q., Mu, Q., Mao, D., 2014. An ionic liquid facilitates the proliferation of antibiotic resistance genes mediated by class I integrons. Environ. Sci. Technol. Lett. 1, 266–270.
Maal-Bared, R., Bartlett, K.H., Bowie, W.R., Hall, E.R., 2013. Phenotypic antibiotic resistance of Escherichia coli and E. coli O157 isolated from water, sediment and biofilms in an agricultural watershed in British Columbia. Sci. Total Environ. 443, 315–323. doi:10.1016/j.scitotenv.2012.10.106
Martinez-Carballo, E., González-Barreiro, C., Scharf, S., Gans, O., 2007. Environmental monitoring study of selected veterinary antibiotics in animal manure and soils in Austria. Environ. Pollut. 148, 570–579.
Mishra, M., Arukha, A.P., Patel, A.K., Behera, N., Mohanta, T.K., Yadav, D., 2018. Multi-drug resistant coliform: Water sanitary standards and health hazards. Front. Pharmacol. 9, 1–8. doi:10.3389/fphar.2018.00311
Motoyama, M., Nakagawa, S., Tanoue, R., Sato, Y., Nomiyama, K., Shinohara, R., 2011. Residues of pharmaceutical products in recycled organic manure produced from sewage sludge and solid waste from livestock and relationship to their fermentation level. Chemosphere 84, 432–438. doi:10.1016/j.chemosphere.2011.03.048
Nwosu, V.C., 2001. Antibiotic resistance with particular reference to soil microorganisms. Res. Microbiol. 152, 421–430.
Pan, X., Qiang, Z., Ben, W., Chen, M., 2011. Residual veterinary antibiotics in swine manure from concentrated animal feeding operations in Shandong Province, China. Chemosphere 84, 695–700.
Pei, R., Kim, S.C., Carlson, K.H., Pruden, A., 2006. Effect of River Landscape on the sediment concentrations of antibiotics and corresponding antibiotic resistance genes (ARG). Water Res. 40, 2427–2435. doi:10.1016/j.watres.2006.04.017
Pruden, A., Arabi, M., Storteboom, H.N., 2012. Correlation between upstream human activities and riverine antibiotic resistance genes. Environ. Sci. Technol. 46, 11541–11549.
Pruden, A., Pei, R., Storteboom, H., Carlson, K.H., 2006. Antibiotic resistance genes as emerging contaminants: Studies in northern Colorado. Environ. Sci. Technol. 40, 7445–7450. doi:10.1021/es060413l
Qiu, Z., Yu, Y., Chen, Z., Jin, M., Yang, D., Zhao, Z., Wang, J., Shen, Z., Wang, X., Qian, D., others, 2012. Nanoalumina promotes the horizontal transfer of multiresistance genes mediated by plasmids across genera. Proc. Natl. Acad. Sci. 109, 4944–4949.
Review on Antimicrobial Resistance., 2014. Review on Antimicrobial Resistance, in: Antimicrobial Resistance: Tackling a Crisis for the Health and Wealth of Nations. Wellcome Trust & HM Government, London.
Ribeiro, A.F., Laroche, E., Hanin, G., Fournier, M., Quillet, L., Dupont, J.P., Pawlak, B., 2012. Antibiotic-resistant Escherichia coli in karstic systems: A biological indicator of the origin of fecal contamination? FEMS Microbiol. Ecol. 81, 267–280. doi:10.1111/j.1574-6941.2012.01382.x
Richmond, M.H., 1975. R factors in man and his environment. Microbiol. Am. Soc. Microbiol. Washington, DC 27–35.
Sah, S.K., Regmi, S., Upreti, A.R., Pathak, S., 2016. Antibiotic resistance patterns and evaluation of treatment in out-patients with urinary tract infections in Nepal. Int. J. Pharm. Sci. Sah al., IJPSR 7, 4626–4631.
Sarba, E.J., Kelbesa, K.A., Bayu, M.D., Gebremedhin, E.Z., Borena, B.M., Teshale, A., 2019. Identification and antimicrobial susceptibility profile of Escherichia coli isolated from backyard chicken in and around ambo, Central Ethiopia. BMC Vet. Res. 15, 1–8. doi:10.1186/s12917-019-1830-z
Sarmah, A.K., Meyer, M.T., Boxall, A.B.A., 2006. A global perspective on the use, sales, exposure pathways, occurrence, fate and effects of veterinary antibiotics (VAs) in the environment. Chemosphere 65, 725–759. doi:10.1016/j.chemosphere.2006.03.026
Sayah, R.S., Kaneene, J.B., Johnson, Y., Miller, R., 2005. Patterns of antimicrobial resistance observed in Escherichia coli isolates obtained from domestic-and wild-animal fecal samples, human septage, and surface water. Appl. Environ. Microbiol. 71, 1394–1404.
Smith, H.W., 1971. Incidence of R+ Escherichia coli in coastal bathing waters of Britain. Nature 234, 155.
Smith, H.W., others, 1970. Incidence in river water of Escherichia coli containing R factors. Nature 228, 1286–1288.
SNI, 2006. Indonesia Standard Method (SNI).
Somekh, E., Heifetz, L., Dan, M., Poch, F., Hafeli, H., Tanai, A., 1996. Penetration and bactericidal activity of cefixime in synovial fluid. Antimicrob. Agents Chemother. 40, 1198–1200.
Taylor, N.G.H., Verner-Jeffreys, D.W., Baker-Austin, C., 2011. Aquatic systems: maintaining, mixing and mobilising antimicrobial resistance? Trends Ecol. Evol. 26, 278–284.
Tesfaye, G., Asrat, D., Woldeamanuel, Y., Gizaw, M., 2009. Microbiology of discharging ears in Ethiopia. Asian Pac. J. Trop. Med. 2, 60–67.
Urase, T., Sato, T., 2016. Quantitative Monitoring of Resistance in <i>Escherichia coli</i> to Clinically Important Antimicrobials in an Urban Watershed. J. Water Environ. Technol. 14, 341–349. doi:10.2965/jwet.16-002
Von Baum, H., Marre, R., 2005. Antimicrobial resistance of Escherichia coli and therapeutic implications. Int. J. Med. Microbiol. 295, 503–511.
Wang, Y., Lu, J., Mao, L., Li, J., Yuan, Z., Bond, P.L., Guo, J., 2019. Antiepileptic drug carbamazepine promotes horizontal transfer of plasmid-borne multi-antibiotic resistance genes within and across bacterial genera. ISME J. 13, 509–522. doi:10.1038/s41396-018-0275-x
Wariso, B.A., Ibe, S.N., 2006. Bacteriology of chronic discharging ears in Port Harcourt, Nigeria. West Afr. J. Med. 25, 219–222.
WHO, 2014. Antimicrobial Resistance: Global Report on Surveillance 2014. Geneva, Switzerland.
Young, H.-K., 1993. Antimicrobial resistance spread in aquatic environments. J. Antimicrob. Chemother. 31, 627–635.
Zhang, X., Li, Y., Liu, B., Wang, J., Feng, C., Gao, M., Wang, L., 2014. Prevalence of veterinary antibiotics and antibiotic- Resistant Escherichia coli in the surface water of a livestock production region in northern China. PLoS One 9. doi:10.1371/journal.pone.0111026
Zhao, L., Dong, Y.H., Wang, H., 2010. Residues of veterinary antibiotics in manures from feedlot livestock in eight provinces of China. Sci. Total Environ. 408, 1069–1075.

Most read articles by the same author(s)