Phenological behavior of Atlas cedar (Cedrus atlantica) forest to snow and precipitation variability in Boutaleb and Babors Mountains, Algeria




Abstract. Missaoui K, Gharzouli R, Djellouli Y, Messner F. 2020. Phenological behavior of Atlas cedar (Cedrus atlantica)  forest to snow and precipitation variability in Boutaleb and Babors Mountains, Algeria. Biodiversitas 21: 239-245. Understanding the changes in snow and precipitation variability and how forest vegetation response to such changes is very important to maintain the long-term sustainability of the forest. However, relatively few studies have investigated this phenomenon in Algeria. This study was aimed to find out the response of Atlas cedar (Cedrus atlantica (Endl.) G.Manetti ex Carrière) forest in two areas (i.e Boutaleb and Babors Mountains) and their response to the precipitation and snow variability. The normalized difference vegetation index (NDVI) generated from satellite images of MODIS time series was used to survey the changes of the Atlas cedar throughout the study area well as dataset of monthly precipitation and snow of the province of Setif (northeast of Algeria) from 2000 to 2018. Descriptive analysis using Standarized Precipitation Index (SPI) showed the wetter years were more frequent in the past than in the last two decades. The NDVI values changes in both areas with high values were detected in Babors Mountains with statistically significant differences. Our findings showed important difference in Atlas cedar phenology from Boutaleb mountains to Babors Mountains which likely related to snow factor.


Alexander L. and Perkins S. 2013. Debate heating up over changes in climate variability. Environ. Res. Lett., 8, 041001,
Beldjazia A. and Alatou D. 2016. Precipitation variability on the massif Forest of Mahouna (North Eastern-Algeria) from 1986 to 2010. International Journal of Management Sciences and Business Research, March-2016 ISSN (2226-8235) Vol-5, Issue 3.
Bigi Velia, Pezzoli Alessandro and Maurizio Rosso. 2018. Past and Future Precipitation Trend Analysis for the City of Niamey (Niger): An Overview. Climate 6, 73; doi:10.3390/cli6030073.
Bounar R. 2014. Study of biological potentialities mapping and development of the chain of babors in the sustainable development approach .these of doctorat. 117 P. (FrenshRef)
Brohan P., Kennedy J. J., Harris I., Tett S. F. B. and Jones P. D. 2006. Uncertainty Estimates in Regional and Global Observed Temperature Changes: A New Dataset from 1850,” Journal of Geophysical Research, Vol. 111,. D12106. doi:10.1029/2005JD006548
Gharzouli R. and Djellouli Y. 2005. Floristic diversity of Kabylie des Babors (Algeria) Volume 16, Number 3, July-August-September
Gharzouli R. 2007. Flora and vegetation of kabylie babors: floristic and phytosociological study of forest and post-forest groups of takoucht, adrar or -mellal, tababort and babor djebels. These doctorat.357 P. (FrenshRef)
Coumou D. and Robinson A. 2013. Historic and future increases in the global land area affected by monthly heat extremes. Environ. Res. Lett., 8, 034018, Crossref.
Guttman N.B. 1999. Accepting the standardized precipitation index: A calculation algorithm. JAWRA J. Am. Water Resour. Assoc., 35, 311–322. [CrossRef]
Hansen J., Sato M. and Ruedy R. 2012. Perception of climate change. Proc. Natl. Acad. Sci. USA, 109, E2415–E2423,
Huete A., Liu H. Q., Batchily K, and Van Leeuwen W. 1997. A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment 59: 440–451. doi:10.1016/S0034-4257(96)00112-5
Jone P. D. and Moberg A. 2003. Hemispheric and LargeScale Surface Air Temperature Variations: An Extensive Revision and Update to 2001,” Journal of Climate, Vol. 16, pp. 206-223. doi:10.1175/1520-0442(2003)016<0206:HALSSA>2.0.CO;2
Jones P. D., Parker D. E., Osborn T. J. and Briffa K. R. 2011. Global and Hemispheric Temperature Anomalies-Land and Marine Instrumental Records, Trends: A Compendium of Data on Global Change.
Landscheidt T. 2000. Solar Wind near Earth: Indicator of Variations in Global Temperature, Proceedings of the 1st Solar and Space Weather Euroconference on the Solar Cycle and Terrestrial Climate, Tenerife, pp. 497-500.

Liang D., Zuo Y., Huang L., Zhao J., Teng L. and Yang F. 2015. Evaluation of the consistency of MODIS land cover product (MCD12Q1) based on Chinese 30 m globeland 30 datasets: A case study in Anhui Province, China. ISPRS Int. J. Geo-Inf., 4, 2519–2541. [CrossRef]
Li X. 2009. Applying GLM Model and ARIMA Model to the Analysis Of Monthly Temperature of Stockholm. D-level Essay in Statistics in Spring 2009 Department of Economics and Society, Dalarna University
McKee T.B., Doesken N.J., Kleist J. 1993. The relationship of drought frequency and duration to time scale. In Proceedings of the Eighth Conference on Applied Climatology, Anaheim, CA, USA, 17–22 January; American Meteorological Society: Boston, MA, USA, pp. 179–184
Olusegun C.F., Akeem B. Rabiu, Jared O. H. Ndeda, Emmanuel Okogbue C. 2014. Trends of temperature and signature of solar activity in selected stations in Nigeria. Atmospheric and Climate Sciences; 4:171-178
Paudel K. P. and Andersen P. 2013. Response of rangeland vegetation to snow cover dynamics in Nepal Trans Himalaya. Climatic Change 117: 149–162. doi:10.1007/s10584-012-0562-x
Rhines A. and Huybers P. 2013. Frequent summer temperature extremes reflect changes in the mean, not the variance. Proc. Natl. Acad. Sci. USA, 110, E546
Satyanarayana B., Thierry B., Seen D.L., Raman A.V. and Muthusankar G. 2001. Remote sensing in mangrove research-relationship between vegetation indices and dendrometric parameters: A case for Coringa, east coast of India. In proceeding of the 22nd Asian Conference on Remote Sensing, Singapore, 5–9 November; Volume 5, p. 9.
Simmons A. J., Berrisford P. D. P., Hersbach H., Hirahara S. and Thépaut J.N. 2017. A reassessment of temperature variations and trends from global reanalyses and monthly surface climatological datasets. Quart. J. Roy. Meteor. Soc., 143, 101–119
Simolo C., Brunetti M., Maugeri M., Nanni T. and Speranza A. 2010 Understanding climate change–induced variations in daily temperature distributions over Italy. J. Geophys. Res., 115, D22110.
Soon W., Baliunas S., Posmentier E. S. and Okeke P. 2000 Variations of Solar Coronal Hole Area and Terrestrial Lower Tropospheric Air Temperature from 1979 to Mid-1998: Astronomical Forcing of Change in Earth’s Climate,” New Astron, Vol. 4, No. 8, , pp. 563-579. doi:10.1016/S1384-1076(00)00002-6
Svoboda M., Hayes M.and Wood D. 2012 Standardized Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland.
Tan B., Morisette J. T., Wolfe R. E., Gao F and Ederer G. a, Nightingale J.and Pedelty J. a. 2008Vegetation phenology metrics derived from temporally smoothed and gap-filled modis data. International Geoscience and Remote Sensing Symposium (IGARSS) 3: 593–596. doi:10.1109/IGARSS.2008.4779417.
Trujillo E., Molotch N. P., Goulden M. L., Kelly A. E. and R. Bales C. 2012. Elevation-dependent influence of snow accumulation on forest greening. Nature Geoscience 5. Nature Publishing Group: 705–709. doi:10.1038/ngeo1571
Wang K., Zhang L., Qiu Y., Ji L., Tian F, Wang C. and Wang Z. (2015) Snow effects on alpine vegetation in the Qinghai-Tibetan Plateau. International Journal of Digital Earth 8: 58–75. doi:10.1080/17538947.2013.848946.x
Wang Y., Woodcock C. E., Buermann W, Stenberg P., Voipio P., Smolander H., Myneni R. B. 2004. Evaluation of MODIS LAI algorithm at a coniferous forest site in Finland. Remote Sensing of Environment, 91, 114–127.
Weier J. and Herring D. 2000. Measuring Vegetation (NDVI & EVI). Earth Observatory. National Aeronautics and Space Administration (NASA). Retrieved July 30, 2015,