The detection of plantaricin-encoding genes and their amino acid profiles in Lactobacillus plantarum AKK30 isolated from Indonesian native chicken

##plugins.themes.bootstrap3.article.main##

ELISABETH LOVIAN ULI BASA
ABINAWANTO
A. SOPHIAN
H. JULENDRA
A. SOFYAN

Abstract

Abstract. Elisabeth LUB, Abinawanto, Sophian A, Julendra H, Sofyan A. 2020. The detection of plantaricin-encoding genes and amino acid profile in Lactobacillus plantarum AKK30 isolated from Indonesian native chicken. Biodiversitas 21: 5792-5799. Plantaricin-encoding genes of lactic acid bacteria (LAB) Lactobacillus plantarum AKK30 which was isolated from Indonesian native chicken has been characterized using DNA sequencing technology. In order to substitute antibiotics for chickens and enhance probiotics in their gut, characterization of the indigenous probiotics in the chicken should be conducted. A potential probiotic in native chicken gut is Lactobacillus plantarum AKK30. Genes that harbor the bacteriocin biosynthesis of the strain were reported for the first time. The bacterium has diverse plantaricin genes, i.e., plnA, plnEF, plnJ, plnK and plnO. According to the dendrogram, the five plantaricin genes were closely related to plnA, plnE, plnF, plnJ, plnK and plnO genes from L. plantarum WCFS1, L. plantarum C11, and L. plantarum V90. Intriguingly, besides various plantaricin-encoding genes, another important probiotic property in L. plantarum AKK30 is cholesterol-lowering activity. Amino acid profiling also indicated proteolysis activity and probiotic potential, for instance, GABA production. Thus, L. plantarum AKK30 may be added in chicken broiler’s diet to provide probiotic benefits.

##plugins.themes.bootstrap3.article.details##

References
Anderssen EL, Diep DB, Nes IF, Eijsink VGH, Nissen-Meyer J. 1998. Antagonistic activity of Lactobacillus plantarum C11: Two new two-peptide bacteriocins, plantaricins EF and JK, and the induction factor plantaricin A. Applied and Environmental Microbiology 64(6): 2269-2272.
Arasu MV, Al-Dhabi NA, Ilavenil S, Ki Choon Choi, Srigopalram S. 2016. In vitro importance of probiotic Lactobacillus plantarum related to medical field. Saudi Journal of Biological Sciences 23: S6-S10.
Arief II, Budiman C, Jenie BSL, Andreas E, Yuneni A. 2015. Plantaricin IIA-1A5 from Lactobacillus plantarum IIA-1A5 displays bactericidal activity against Staphylococcus aureus. Beneficial Microbes 6(4): 603-613.
Chanalia P, Gandhi D, Attri P, Dhanda S. Extraction, purification and characterization of low molecular weight proline iminopeptidase from probiotic L. plantarum for meat tenderization. International Journal of Biological Macromolecules 109: 651-663
Ben-Omar N, Abriouel H, Lucas R, Martínez-Cañamero M, Guyot J-Pi, Gálvez A. 2006. Isolation of bacteriocinogenic Lactobacillus plantarum strains from ben saalga, a traditional fermented gruel from Burkina Faso. International Journal of Food Microbiology 112: 44-50.
da Silva Sabo S, Vitolo M, González JMD, de Souza Oliveira RP. 2014. Overview of Lactobacillus plantarum as a promising bacteriocin producer among lactic acid bacteria. Food Research International 64: 527-536.
de Vries MC, Vaughan EE, Kleerebezem M, de Vos WM. 2006. Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal 16: 1018-1028.
Deegan LH, Cotter PD, Hill C, Ross P. 2006. Bacteriocins: Biological tools for bio-preservation and shelf life extension. International Dairy Journal 16: 1058—1071.
den Bogaard, AE, London N, Driessen C, Stobberingh EE. 2001. Antibiotic resistance of faecal Escherichia coli in poultry, poultry farmers and poultry slaughterers. Journal of Antimicrobial Chemotherapy 47: 763-771.
Diep DB, LS Håvarstein, IF Nes. 1996. Characterization of the locus responsible for the bacteriocin production in Lactobacillus plantarum C11. Journal of Bacteriology 178(15): 4472-4483.
Diep DB, Straume D, Kjos M, Torres C, Nes IF. 2009. An overview of the mosaic bacteriocin pln loci from Lactobacillus plantarum. Peptides 30: 1562—1574.
Farber JM, Peterkin PI. 1991. Listeria monocytogenes, a food-borne pathogen. Microbiological Reviews 55(3): 476—511.
Holo H, Jeknic Z, Daeschel M, Stevanovic S, Nes IF. 2001. Plantaricin W from Lactobacillus plantarum belongs to a new family of two-peptide lantibiotics. Microbiology 147: 643-651.
Huang M-K, Choi YJ, Houde R, Lee J-W, Lee B, Zhao X. 2004. Effects of Lactobacilli and an acidophilic fungus on the production performance and immune responses in broiler chickens. Poultry Science 83: 788-795.
Hui Fong Tai, Hooi Ling Foo, Rahim RA, Teck Chewn Loh, Abdullah MP, Yoshinobu K. 2015. Molecular characterization of new organization of plnEF and plw loci of bacteriocin genes harbor concomitantly in Lactobacillus plantarum I-UL4. Microbial Cell Factories: 1-13.
Jiménez-Díaz R, Ruiz-Barba JL, Cathcart DP, Holo H, Nes IF, Sletten KH, Warner PJ. 1995. Purification and partial amino acid sequence of plantaricin S, a bacteriocin produced by Lactobacillus plantarum LPCO10, the activity of which depends on the complementary action of two peptides. Applied and Environmental Microbiology 61(12): 4459-4463.
Jinjin Pei, Xinsheng Li, Hao Han, Yanduo Tao. 2018. Purification and characterization of plantaricin SLG1, a novel bacteriocin produced by Lb. plantarum isolated from yak cheese. Food Control 84: 111-117.
Julendra H, Suryani AE, Istiqomah L, Damayanti E, Anwar M, Fitriani N. 2017. Isolation of lactic acid bacteria with cholesterol-lowering activity from digestive tracts of Indonesian native chickens. Media Peternakan 40(1): 35-41.
Kabir SML. 2009. The role of probiotics in the poultry industry. International Journal of Molecular Sciences 10: 3531-3546.
Kieun Lee, Yeonhee Lee. 2009. Production of c9, t11- and t10, c12-conjugated linoleic acids in human by Lactobacillus rhamnosus PL60. Journal of Microbiology and Biotechnology 19(2): 1617-1619.
Kirbiš A. 2007. Microbiological screening method for detection of aminoglycosides, ?-lactames, macrolides, tetracyclines and quinolones in meat samples. Slovenian Veterinary Research 44(1/2): 11-18.
Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MWEJ, Stiekema W, Klein Lankhorst RM, Bron PA, Hoffer SM. Groot MNN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ. 2003. Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America 100(4): 1990-1995.
Linares DM, Gómez C, Renes E, Fresno JM, Tornadijo ME, Ross RP, Stanton C. 2017. Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods. Frontiers in Microbiology 8(846):1-11.
Maldonado A, Ruiz-Barba JL, Jiménez-Díaz R. 2003. Purification and genetic characterization of plantaricin NC8, a novel coculture-inducible two-peptide bacteriocin from Lactobacillus plantarum NC8. Applied and Environmental Microbiology 6(1): 383-389.
Masood MI, Qadir MI, Shirazi JH, Khan IU. 2010. Beneficial effects of lactic acid bacteria on human beings. Critical Reviews in Microbiology 37: 91-98.
Menconi A, Kallapura G, Latorre JD, Morgan MJ, Pumford NR, Hargis BM, Tellez G. 2014. Identification and characterization of lactic acid bacteria in a commercial probiotic culture. Bioscience of Microbiota, Food and Health 33(1): 25-30.
Menteri Pertanian Republik Indonesia. 2017. Peraturan Menteri Pertanian Republik Indonesia nomor 14/PERMENTAN/PK.350/5/2017 tentang Klasifikasi obat Hewan: 1-25.
Perrière G, Gouy M. 1996. WWW-Query: An on-line retrieval system for biological sequence banks. Biochimie 78: 364-369.
Remiger A, Ehrmann MA, Vogel RF. 1996. Identification of bacteriocin-encoding genes in lactobacilli by polymerase chain reaction (PCR). Systematic and Applied Microbiology 19: 28-34.
Rongzhen Zhang, Taowei Yang, Zhiming Rao, Hongmei Sun, Meijuan Xu, Xian Zhang, Zhenghong Xu & Shangtian Yang. 2014. Efficient one-step preparation of ?-aminobutyric acid from glucose without an exogenous cofactor by designated Corynebacterium glutamicum. Green Chemistry 16: 4190-4197.
Settanni L, Corsetti A. 2007. Application of bacteriocins in vegetable food biopreservation. International Journal of Food Microbiology 121(2008): 123-138.
Tanous C, Chambellon E, Sepulchre A-M, Yvon M. The gene encoding the glutamate dehydrogenase in Lactococcus lactis is part of a remnant Tn3 transposon carried by large plasmid. Journal of Bacteriology 187(14): 5019-5022.
Todorov SD. 2009. Bacteriocins from Lactobacillus plantarum – production, genetic organization and mode of action. Brazilian of Microbiology 40: 209-221.
Wen Jiang, Shaoping Nie, Zhe Qu, Chongpeng Bi, Anshan Shan. 2014. The effects of conjugated linoleic acid on growth performance, carcass traits, meat quality, antioxidant capacity, and fatty acid composition of broilers fed corn dried distillers grains with solubles. Poultry Science 93: 1202-1210.
Yulinery T, Nurhidayat N. 2015. Uji aktivitas antibakteri Lactobacillus plantarum terseleksi dari buah markisa (Passiflora edulis) dan kaitannya dengan gen plantarisinA (plnA). Prosiding Seminar Nasional Masyarakat Biodiversitas Indonesia 1(2): 270-277.
Yunes RA, Poluektova EU, Dyachkova MS, Klimina KM, Kovtun AS, Averina OV, Orlova VS, Danilenko VN. GABA production and structure of gadB/gadC genes in Lactobacillus and Bifidobacterium strains from human microbiota. Anaerobe 42: 197-204.
Zareian M, Ebrahimpour A, Mohamed AKS, Saari N. 2013. Modeling of glutamic acid production by Lactobacillus plantarum MNZ. Electronic Journal of Biotechnology 16(4): 1-17.
Buntin N, Hongpattarakere T, Ritari J, Douillard FP, Paulin L, Boeren S, Shetty SA, de Vos WM. 2016. An inducible operon is involved in inulin utilization in Lactobacillus plantarum strains, as revealed by comparative proteogenomics and metabolic profiling. Applied and Environmental Microbiology 83: 1-13.

Most read articles by the same author(s)

1 2 > >>