Plankton biodiversity in various typologies of inundation in Paminggir peatland, South Kalimantan, Indonesia on dry season

##plugins.themes.bootstrap3.article.main##

YUNANDAR
HEFNI EFFENDI
WIDIATMAKA
YUDI SETIAWAN

Abstract

Abstract. Yunandar, Effendi H, Widiatmaka, Setiawan Y. 2020. Plankton biodiversity in various typologies of inundation in Paminggir peatland, South Kalimantan, Indonesia on dry season. Biodiversitas 21: 1012-1019. The aim of the study was to analyze the typology of inundation areas and plankton biodiversity in Paminggir peatland, South Borneo, Indonesia. Typology of inundation was determined by image processing and spatial analysis using supervised classification method from Landsat 1994, 2014, 2019. Plankton biodiversity was determined using purposive sampling in detected inundation from spatial analysis. Some environmental factors like temperature, Ph and DO were also analyzed. Confirmation of the results of spatial analysis of peatland typology made from overall accuracy and Kappa informed 88.48% and 0.8. The typology of permanent inundation decreased by 30% from 1994 to 2019 during the dry period from June to August of the total study area of 43275,584 hectares due to sedimentation, land conversion for settlement, and increase in water weeds. Inundation criteria with duration throughout the year were was categorized as permanent, whereas temporary inundation was tentative even in certain dry season. Plankton index biodiversity in permanent inundation was more varied compared to temporary inundation. Phytoplankton from the freshwater Chrysophyta group was more dominant, while zooplankton from the Nauplius group, which were the natural food for fish larvae always presented in the typology of permanent inundation.

##plugins.themes.bootstrap3.article.details##

References
Ahmed F. 2012. Detection of change in vegetation cover using multi-spectral and multi temporal information for District Sargodha, Pakistan. Soc. Nat. 24: 557–572.
Alfonso G, Belmonte G. 2011. Calanoida (Crustacea copepoda) from the inland waters of Apulia (south-eastern Italy). J. Limnol. 70: 57–68
Ausseil AGE, Dymond JR, Shepherd JD. 2007. Rapid mapping and prioritisation of wetland sites in the Manawatu-Wanganui region, New Zealand. Environ. Manag. 39: 316–325
Astirin PO, Setyawan AD. 2000. Plankton Biodiversity at Jabung Swamp, Lamongan and Tuban Districts. Biodiversitas 2: 65 – 71.
Benarjee G, Narasimha RK. 2013. Physico-Chemical Factors Influenced Plankton Biodiversity and Fish Abundance-A Case Study of Nagaram Tank of Warangal, Andhra Pradesh. Int. J. Life Sci. Pharm. Res. 2: 248-260
Bucholtz RH, Meilvang AS, Cedhagen T, Christensen JT. 2009. Biological Observations on the Mudskipper Pseudapocryptes elongatus in the Mekong Delta, Vietnam. J. World Aquac. Soc. 40: 711-723
Borro M, Morandeira N, Salvia M, Minotti P, Perna P, Kandus P. 2005. Mapping shallow lakes in a large South American ?oodplain: A frequency approach on multitemporal Landsat TM/ETM data. J. Hydrol. 75: 5–23
Chen ZR, Wong MH. 2016. Integrated wetlands for food production. Environ. Res. 148: 429–442
Chaparro G, Horvath Z, Ines O’Farrell, Ptacnik R, Thomas H. 2018. Plankton metacommunities in floodplain wetlands under contrasting hydrological conditions. Freshwater Biol. 1–12.
Chandrasoma J, Pushpalatha CKB. 2018. Fisheries enhancements in inland waters in Sri Lanka with special reference to culture based fisheries: current status and impacts. J. Aquat. Sci. 23: 49-65
Chellappa NT, Borba JM, Rocha O. 2008. Phytoplankton community and physicalchemical characteristics of water in the public reservoir of Cruzeta, RN, Brazil. Braz. J. Biol. 68: 477–494
Cooke SJ, Allison EH, Beard TD, Arlinghaus R, Arthington AH, Bartley DM, Cowx IG, Fuentevilla C, Leonard NJ, Lorenzen K, Lynch AJ, Nguyen VM, Youn S-J, Taylor WW, Welcomme RL. 2016. On the sustainability of inland fisheries: Finding a future for the forgotten. Ambio. 45 :753-764.
Dong Z, Wang Z, Liu D, Song K, Li L, Jia M, Ding Z. 2014. Mapping wetland areas using Landsat-derived NDVI and LSWI: A case study of West Songnen plain, Northeast China. J. Indian Soc. Remote Sens. 42: 1–8.
Dodson SI, Newman AL, Will-Wolf S, Alexander ML, Woodford NP. 2009. The relationship between zooplankton community structure and lake characteristics in temperature lakes (Northern Wisconsin, USA). J. Plankton Res. 31: 93-100.
[FAO] Food and Agriculture Organization. 2011. Guideines for the ecolabelling of fish and fishery products from inland capture fisheries. Rome, Italy.
Giglio S, Chou WKW, Ikeda H, Cane DE, Monis PT. 2010. Biosynthesis of 2-methylisoborneol in cyanobacteria. Environ. Sci. Technol 45: 992–998
Grand-Clement E, Anderson K, Smith D, Angus M, Luscombe DJ, Bray LS, Brazier RE, Gatis N. 2015. New approaches to the restoration of shallow marginal peatlands (Review). J. Environ. Manag. 161: 417-430.
Gwet K. 2002. Kappa statistic is not satisfactory for assessing the extent of agreement between raters. Stat. Methods Inter-Rater Reliab. Assess. 76: 378–382.
Herbert S, Tollner EW, Karen V. 2012. Geospatial modeling of site suitability for pond-based Tilapia and Clarias farming in Uganda. J. Appl. Aquac. 24: 147-169.
llyova M, Kubicek F. 2002. Crustaceans (Crustacea: Cladocera, Copepoda) of the Morava River alluvium on the Slovak territory. Acta Soc. Zool. Bohemic. 66: 205–212
Imai H, Chang KH, Kusaba M, Nakano SI. 2009. Temperature-dependent dominance of Microcystis (Cyanophyceae) species: Microcystis aeruginosa and Microcystis wesenbergii. J. Plankton Res. 31: 171–178
Jüttner F, Watson SB. 2007. Biochemical and ecological control of geosmin and 2-methylisoborneol in source waters. Appl. Environ. Microbiol. 73: 4395 – 4406.
Kelley GW, JS Hobgood, KW Bedford, DJ Schwab. 1998. Generation of three-dimensional lake model forecasts for Lake Erie. Weather and Forecasting 13: 305-315
Lynch AJ, Cowx IG, Fluet-Chouinard E, Glaser SM, Phang SC, Bower SD, Brooks JL, Bunnell DB, Claussen JE, Cooke SJ, Beard TD, Kao YC, Myers BJE, Reid AJ, Taylor JJ, Youn S, Lorenzen K. 2017. Inland ?sheries-Invisible but integral to the UN Sustainable Development Agenda for ending poverty by 2030. Global Environ. Change 47: 167–173.
Li L, Chen Y, Xu T, Liu R, Shi K, Huang C. 2015. Super-resolution mapping of wetland inundation from remote sensing imagery based on integration of back-propagation neural network and genetic algorithm. Remote Sens. Environ. 164: 142–154.
Manju G, VM Chowdary YK, Srivastava S, Selvamani A, Jeyaram S, Adiga. 2005. Mapping and characterization of inland wetlands using remote sensing and GIS. J. Indian Soc. Remote Sens. 33: 51-66.
Manson CF. 1981. Biology of Freshwater Pollution. Longman, London
Mccullough IM, Loftin CS, Sader SA. 2012. Combining lake and watershed characteristics with Landsat TM data for remote estimation of regional lake clarity. Remote Sens. Environ. 123: 109–115.
Mujiyanto, DW, Tjahjo H, Sugianti Y. 2011. The relationship between phytoplankton abundance and N:P concentration ration at cage aquaculture area in Ir. H. Djuanda reservoir. Jurnal Limnotek 18: 15-25.
Nguyen VM, Lynch AJ, Nathan Y, Cowx IG, Beard DT, Taylor WW, Cooke SJ. 2016. To manage inland ?sheries is to manage at the social-ecological watershed scale. J. Environ. Manag. 181: 312-325.
Niken TM, Pratiwi. 2019. Community Structure of Plankton at Central Kalimantan Peat Swamp Area. The International Conference on Biosphere Reserve. IOP Conf. Series: Earth Environ. Sci. 298.
Odum EP. 1993. Dasar-dasar Ekologi. Terjemahan Tjahjono Samingan. Edisi Ketiga. Gadjah Mada University Press, Yogyakarta.
Padmavathi P, Veeraiah K. 2009. Studies on the influence of Microcystis aeruginosa on the ecology and fish production of carp culture ponds. Afr. J. Biotechnol. 8: 1911–1918.
Pekel JF, Cottam A, Gorelick N, Belward AS. 2016. High-resolution mapping of global surface water and its long-term changes. Nat. 540-548.
Prasad SN, Ramachandra TV, Ahalya N, Sengupta T, Kumar A, Tiwari AK, Vijayan VS, L Vijayan. 2002. Conservation of wetlands of India – a review. Trop. Ecol. 43: 173-186.
Pratono BA., Ambariyanto M, Zainuri. 2012. Struktur komunitas zooplankton di muara Sungai Serang. Jakarta. Indonesian J. Mar. Sci. 10: 90-97.
Rapinel S, Bouzillé JB, Oszwald J, Bonis A. 2015. Use of bi-seasonal Landsat-8 imagery for mapping marshland plant community combinations at the regional scale. Wetlands 35: 1–12.
Rahayu S, Setyawati TR, Turnip M. 2013. Struktur komunitas zooplankton di Muara Sungai Mempawah Kabupaten Pontianak berdasarkan pasang surut air laut. Jurnal Protobiont 2: 49-55.
Roy D, Masud AA, Bhouiyan NA, Naser MN. 2013. Food and feeding habits of climbing pearch Anabas testudineus (Bloch) and indeginous cat fish Rita rita (hamilton). Int. J. BioRes. 15 :1-6.
Salam MA, Khatun NA, Ali MM. 2005. Carp farming potential in Barhatta Upazilla, Bangladesh. Aquaculture 245: 75-87.
Sales, J. 2011. First feeding of freshwater fish larvae with live feedversus compound diets: a meta-analysis. Aquacult. Int. 19:1217–1228.
Sakamoto T, Phung CV, Kotera A, Nguyen KD, Yokozawa M. 2009. Analysis of rapid expansion of inland aquaculture and triple rice-cropping areas in a coastal area of the Vietnamese Mekong Delta using MODIS time-series imagery. Landscape and Urban Planning 921: 34–46.
Sentosa DA, Hedianto H, Satria. 2017. Eutrophication potential in lake matano based on its phytoplankton community and water quality. Limnotek 24: 61-73.
Schagerl M, Drozdowski I, Angeler DG, Hein T, Preiner S. 2009. Water age – a major factor controlling phytoplankton community structure in a reconnected dynamic floodplain (Danube, Regelsbrunn, Austria). J. Limnol. 68: 274–287.
Sugianti Y, Putri MRA, Krismono. 2015. Community characteristic and phytoplankton abundance in Talaga lake, Central Sulawesi. Limnotek 22: 86–95.
Sofarini D, Herawati EY, Mahmudi M, Hertika AMS, Arfiati D, Musa M, Amin M, Supriharyono. 2019. Analysis of stomach content of piscivorous fishes caught in Danau Panggang Peatland, South Kalimantan, Indonesia. Biodiversitas 20: 3788-3793.
Siriwardana C, Asitha T, Cooray, Sudantha S, Liyanage SM, Koliyabandara PA. 2019. Seasonal and Spatial Variation of Dissolved Oxygen and Nutrients in Padaviya Reservoir, Sri Lanka. Hindawi J. Chem. 2019: 1- 11.
Tiner R. 2004. Remotely-sensed indicators for monitoring the general condition of “natural habitat” in watersheds: An application for Delaware’s Nanticoke River watershed. Ecol. Indic. 4: 227-243.
Thomas RF, Kingsford RT, Lu Y, Cox SJ, Sims NC, Hunter SJ. 2015. Mapping inundation in the heterogeneous ?oodplain wetlands of the Macquarie Marshes, using Landsat Thematic Mapper. J. Hydrol. 524: 194–213.
Thirunavukkarasu K, Soundarapandian P, Varadharajan D, Gunalan B. 2013. Zooplankton Composition and Community Structure of Kottakudi and Nari Backwaters, South East of Tamil Nadu. J Environ. Anal. Toxicol. 4: 200.
Torbick N, Hession S, Hagen S, Wiangwang N, Becker B, Qi J. 2013. Mapping inland lake water quality across the lower Peninsula of Michigan using Landsat TM imagery. Int. J. Remote Sens. 34: 7607–7624.
Trinugroho MW, Mawardi. 2017. The Use of Remote sensing for Monitoring of Inundation Area on fresh Swampland. Jurnal Ilmiah Geomatika 23: 49-56.
Viera AJ, Garrett JM. 2005. Understanding inter-observer agreement: the kappa statistic. Fam. Med. 37: 360–363.
Widyarini H, Niken TM, Pratiwi, Sulistiono. 2017. Zooplankton community structure at Majakerta estuary and its surrounding waters, Indramayu regency, West Java Province. Jurnal Ilmu dan Teknologi Kelautan Tropis 9: 91-103.
Wijenayake WMHK, Gunaratne ABAK, De Silva SS, Amarasinghe US. 2014. Use of geographical information system and remote sensing techniques for planning culture-based fisheries in non-perennial reservoirs of Sri Lanka. Res. Manag. 19: 183-191.
Zalocar de Domitrovic Y, Poi de Neiff ASG, Casco SL. 2007. Abundance and diversity of phytoplankton in the Paraná River (Argentina) 220 km downstream of the Yacyretá reservoir. Braz. J. Biol. 67: 53–63.