The isolation, characterization endophytic bacteria from roots of local rice plant Kamba in, Central Sulawesi, Indonesia
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Sudewi S, Ala A, Baharuddin, Farid M. 2020. The isolation, characterization endophytic bacteria on from roots of local rice plant Kamba in Central Sulawesi, Indonesia. Biodiversitas 21: 1614-1624. The local Kamba rice plants are cultivated by the Bada Valley people for generations by obtaining seeds from previous crops. This rice plant is able to survive even though it is cultivated with traditional cultivation techniques. The ability to survive is suspected because this local rice plant is associated with endophytic bacteria through a variety of mechanisms including being able to produce the IAA hormone and its ability to dissolve phosphate. This study aims to find endophytic bacteria that have the potential to produce IAA and phosphate solvents through morphological and physiological characterization (Gram reaction test with 3% KOH, catalase test, hypersensitivity reaction and hemolysis activity), screening of IAA-producing bacteria qualitative and quantitative, phosphate dissolution activity on Pikovskaya medium, and quantitative using a spectrophotometer. Endophytic bacteria isolates from Gintu give the highest yields in IAA production and phosphate solubility activity, namely RKGU11 and RKGU6, respectively at 4,905 mg L-1 and 10.984 mg L-1 so that it has the potential to be used as a candidate for biofertilizer agents in developing effective sustainable agriculture, respectively, efficient and environmentally friendly.
##plugins.themes.bootstrap3.article.details##
Afzal, I., Shinwari, Z. K., Sikandar, S., & Shahzad, S. (2019, April). Plant beneficial endophytic bacteria: Mechanisms, diversity, host range and genetic determinants. Microbiological Research, Vol. 221, pp. 36–49. https://doi.org/10.1016/j.micres.2019.02.001
Amaria, W., Kasim, N. N., & Munif, A. (2019). Kelimpahan Populasi Bakteri Filosfer, Rizosfer Dan Endofit Tanaman Kemiri Sunan (Reutealis Trisperma (Blanco) Airy Shaw), Serta Potensinya Sebagai Biokontrol. TABARO, 3(1), 305–317.
Astriani, M., Zubaidah, S., Abadi, A. L., & Suarsini, E. (2020). Pseudomonas plecoglossicida as a novel bacterium for phosphate solubilizing and indole-3-acetic acid-producing from soybean rhizospheric soils of East Java , Indonesia. 21(2), 578–586. https://doi.org/10.13057/biodiv/d210220
Ben Abdallah, R. A., & Mejdoub-Trabelsi, B. M.-. (2016). Isolation of Endophytic Bacteria from Withania Somnifera and Assessment of their Ability to Suppress Fusarium Wilt Disease in Tomato and to Promote Plant Growth. Journal of Plant Pathology & Microbiology, 07(05). https://doi.org/10.4172/2157-7471.1000352
Bressan, W., & Borges, M. T. (2004). Delivery methods for introducing endophytic bacteria into maize. BioControl, 49(3), 315–322. https://doi.org/10.1023/B:BICO.0000025372.51658.93
Castanheira, N. L., Dourado, A. C., Pais, I., Semedo, J., Scotti-Campos, P., Borges, N., … Fareleira, P. (2017). Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiological Research, 198, 47–55. https://doi.org/10.1016/j.micres.2017.01.009
Chandra, T. J., & Mani, P. S. (2011). A study of 2 rapid tests to differentiate Gram positive and Gram negative aerobic bacteria. Journal of Medical and Allied Sciences, 1(2), 84–85.
Cherchali, A., Boukhelata, N., Kaci, Y., Abrous-Belbachir, O., & Djebbar, R. (2019). Isolation and identification of a phosphate-solubilizing Paenibacillus polymyxa strain GOL 0202 from durum wheat (Triticum durum Desf.) rhizosphere and its effect on some seedlings morphophysiological parameters. Biocatalysis and Agricultural Biotechnology, 19, 101087. https://doi.org/10.1016/j.bcab.2019.101087
Dash, C., & J Payyappilli, R. (2016). KOH string and Vancomycin susceptibility test as an alternative method to Gram staining. Journal of International Medicine and Dentistry, 3(2), 88–90. https://doi.org/10.18320/JIMD/201603.0288
David, A. S., Seabloom, E. W., & May, G. (2016). Plant Host Species and Geographic Distance Affect the Structure of Aboveground Fungal Symbiont Communities, and Environmental Filtering Affects Belowground Communities in a Coastal Dune Ecosystem. Microbial Ecology, 71(4), 912–926. https://doi.org/10.1007/s00248-015-0712-6
Djaya, L., Hersanti, Istifadah, N., Hartati, S., & Joni, I. M. (2019). In vitro study of plant growth promoting rhizobacteria (PGPR)and endophytic bacteria antagonistic to Ralstonia solanacearum formulated with graphite and silica nano particles as a biocontrol delivery system (BDS). Biocatalysis and Agricultural Biotechnology, 19. https://doi.org/10.1016/j.bcab.2019.101153
Etesami, H., & Alikhani, H. A. (2016). Co-inoculation with endophytic and rhizosphere bacteria allows reduced application rates of N-fertilizer for rice plantquery id="q1">. Rhizosphere, 2, 5–12. https://doi.org/10.1016/j.rhisph.2016.09.003
Etesami, H., Alikhani, H. A., & Hosseini, H. M. (2015). Indole-3-acetic acid (IAA) production trait, a useful screening to select endophytic and rhizosphere competent bacteria for rice growth promoting agents. MethodsX, 2(February), 72–78. https://doi.org/10.1016/j.mex.2015.02.008
Glickmann, E., & Dessaux, Y. (1995). A Critical Examination of the Specificity of the Salkowski Reagent for Indolic Compounds Produced by Phytopathogenic Bacteria. In APPLIED AND ENVIRONMENTAL MICROBIOLOGY (Vol. 61).
Gopalakrishnan, S., Srinivas, V., Vemula, A., Samineni, S., & Rathore, A. (2018). Influence of diazotrophic bacteria on nodulation, nitrogen fixation, growth promotion and yield traits in five cultivars of chickpea. Biocatalysis and Agricultural Biotechnology, 15(May), 35–42. https://doi.org/10.1016/j.bcab.2018.05.006
Herlina, L., Pukan, K. K., & Mustikaningtyas, D. (2016). Kajian Bakteri Endofit Penghasil Iaa (Indole Acetic Acid) Untuk Pertumbuhan Tanaman. Sainteknol, 14(1), 51–58. https://doi.org/10.15294/sainteknol.v14i1.7616
Hilbert, M., Voll, L. M., Ding, Y., Hofmann, J., Sharma, M., & Zuccaro, A. (2012). Indole derivative production by the root endophyte piriformospora indica is not required for growth promotion but for biotrophic colonization of barley roots. New Phytologist, 196(2), 520–534. https://doi.org/10.1111/j.1469-8137.2012.04275.x
Khamwan, S., Boonlue, S., riddech, N., Jogloy, S., & Mongkolthanaruk, W. (2018). Characterization of endophytic bacteria and their response to plant growth promotion in Helianthus tuberosus L. Biocatalysis and Agricultural Biotechnology, 13(December 2017), 153–159. https://doi.org/10.1016/j.bcab.2017.12.007
Lynn, T. M., Win, H. S., Kyaw, E. P., Latt, Z. K., & and San San Yu. (2013). Characterization of Phosphate Solubilizing and Potassium Decomposing Strains and Study on their Effects on Tomato Cultivation. International Journal of Innovation and Applied Studies, 3(4), 959–966. Retrieved from http://www.issr-journals.org/ijias/abstract.php?article=IJIAS-13-147-12
Ma, Y., Rajkumar, M., Zhang, C., & Freitas, H. (2016). Beneficial role of bacterial endophytes in heavy metal phytoremediation. Journal of Environmental Management, 174, 14–25. https://doi.org/10.1016/j.jenvman.2016.02.047
Miliute, I., Buzaite, O., Baniulis, D., & Stanys, V. (2015). Bacterial endophytes in agricultural crops and their role in stress tolerance: a review. Zemdirbyste-Agriculture. https://doi.org/10.13080/z-a.2015.102.060
Mitra, D., Arup Kumar Mondal, Saikat Acharya, & Arijit Mukhopadhyay. (2014). Isolation and characterization of some intracellular pigmented bacteria from soil & coal powder. Research in Biotechnology, 5(6).
Mohamed Babiker, B., Abd Elmahamoud Ahmed, M., & Ibrahim, H. (2016). Isolation &Identification of Catalase Producing Bacillus spp: A Comparative Study. International Journal of Advanced Research, 4(2), 1206–1211.
Mohammed, B. L., Mohammed, L., & Toama, N. (2019). Biological control of Fusarium wilt in tomato by endophytic Heating by and endophytic Cooling Biological control of Fusarium wilt in tomato rhizobactria rhizobactria Assessing the feasibility of usin. Energy Procedia, 157, 171–179. https://doi.org/10.1016/j.egypro.2018.11.178
Munif, A., Wiyono, S., & Suwarno, S. (2012). Isolasi Bakteri Endofit Asal Padi Gogo dan Potensinya sebagai Agens Biokontrol dan Pemacu Pertumbuhan. Jurnal Fitopatologi Indonesia, 8(3), 57–64. https://doi.org/10.14692/jfi.8.3.57
Murali, A., & Patel, S. (2017). The Effect of Different Heavy Metal Acetate Solutions on the Inhibition of Catalase Enzyme. Journal of the South Carolina Academy of Science, 15(2), 13.
Oteino, N., Lally, R. D., Kiwanuka, S., Lloyd, A., Ryan, D., Germaine, K. J., & Dowling, D. N. (2015). Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Frontiers in Microbiology, 6(JUL), 1–9. https://doi.org/10.3389/fmicb.2015.00745
Premono, M. E., Moawad, A. M., & Vlek, P. L. G. (1996). Effect of phosphate-solubilizing Pseudomonas putida on the growth of maize and its survival in the rhizosphere.
Pulungan, A. S., & Tumangger, D. E. (2018). Isolasi Dan Karakterisasi Bakteri Endofit Penghasil Enzim Katalase Dari Daun BuasBuas ( Premna pubescens Blume ) Isolation and Characterization of Endophytic Bacteria Producing Catalase Enzyme from Buasbuas ( Premna pubescens Blume ) Leaves. Jurnal Biologi Lingkungan, Industri, Kesehatan, 5(1), 72–80.
Ramesh, Vinithkumar, Kirubagaran, Venil, & Dufossé. (2019). Multifaceted Applications of Microbial Pigments: Current Knowledge, Challenges and Future Directions for Public Health Implications. In Microorganisms (Vol. 7). https://doi.org/10.3390/microorganisms7070186
Sahu, A. K., Kar, B. R. K., Sahu, S. S., & Achary, Pragnya Paramita, Harichandan, P. S. (2019). Isolation, Characterization of Endophytic Bacteria from Psidium Guajava Plant and Screening of their Antibiotic Activities. International Journal for Research in Applied Science and Engineering Technology, 7(1), 345–355. https://doi.org/10.22214/ijraset.2019.1061
Samyuktha, S., & Mahajan, S. N. (2016). Isolation of pigment producing Bacteria and characterization of extracted pigment. 2(7), 657–664. https://doi.org/10.18869/mphbs.2016.144
Sanjotha, P., Mahantesh, P., & Patil, C. S. (2011). Isolation and Screening of Efficiency of Phosphate Solubilizing Microbes. International Journal of Microbiology Research, 3(1), 56–58. https://doi.org/10.9735/0975-5276.3.1.56-58
Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological Research, 183, 92–99. https://doi.org/10.1016/j.micres.2015.11.008
Silveira, A. P. D. da, Sala, V. M. R., Cardoso, E. J. B. N., Labanca, E. G., & Cipriano, M. A. P. (2016). Nitrogen metabolism and growth of wheat plant under diazotrophic endophytic bacteria inoculation. Applied Soil Ecology, 107, 313–319. https://doi.org/10.1016/j.apsoil.2016.07.005
Sorokulova, I. B., Pinchuk, I. V., Denayrolles, M., Osipova, I. G., Huang, J. M., Cutting, S. M., & Urdaci, M. C. (2008). The safety of two Bacillus probiotic strains for human use. Digestive Diseases and Sciences, 53(4), 954–963. https://doi.org/10.1007/s10620-007-9959-1
Souza, de R., Ambrosini, A., & Passaglia, L. M. P. (2015). Plant growth-promoting bacteria as inoculants in agricultural soils. Genetics and Molecular Biology, 38(4), 401–419. https://doi.org/10.1590/S1415-475738420150053
Susilowati, D. N., Riyanti, E. I., Setyowati, M., & Mulya, K. (2018). Indole-3-acetic acid producing bacteria and its application on the growth of rice. AIP Conference Proceedings, 2002(August). https://doi.org/10.1063/1.5050112
Suslow, T. ., Schroth, M. ., & Isaka, M. (1982). Application of a Rapid Method for Gram Differentiation of Plant Pathogenic and Saprophytic Bacteria Without Staining. The American Phytopathological Society, 72(7), 917–918.
Valetti, L., Iriarte, L., & Fabra, A. (2018). Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Applied Soil Ecology, 132(August), 1–10. https://doi.org/10.1016/j.apsoil.2018.08.017
Wiratno, Syakir, M., Sucipto, I., & Pradana, A. P. (2019). Isolation and characterization of endophytic bacteria from roots of piper nigrum and their activities against Fusarium oxysporum and Meloidogyne incognita. Biodiversitas, 20(3), 682–687. https://doi.org/10.13057/biodiv/d200310