Plant diversity and composition at three Imperata grasslands in Bogor, Katingan, and Kupang, Indonesia

##plugins.themes.bootstrap3.article.main##

DIDI USMADI
JOKO RIDHO WITONO
RENI LESTARI
DIDIK WIDYATMOKO
MAHAT MAGANDHI
IYAN ROBIANSYAH
ARIEF NOOR RACHMADIYANTO
DANANG WAHYU PURNOMO
RIZMOON NURUL ZULKARNAEN
REZA RAMDAN RIVAI
HENDRA HELMANTO
ANGGA YUDAPUTRA
FRISCA DAMAYANTI

Abstract

Abstract. Usmadi D, Witono JR, Lestari R, Widyatmoko D, Magandhi M, Robiansyah I, Rachmadiyanto AN, Purnomo DW, Zulkarnaen RN, Rivai RR, Helmanto H, Yudaputra A, Damayanti F. 2020. Plant diversity and composition at three Imperata grasslands in Bogor, Katingan, and Kupang, Indonesia. Biodiversitas 21: 2804-2813. Imperata grassland is among the largest proportions of marginal lands in Indonesia. Despite the dominance of Imperata cylindrica grass, certain plant species are able to compete and live together with this species, suggesting window of opportunity that the grasslands can be restored. Yet, the existing diversity and composition of plants in Imperata grasslands may vary due to differences in climatic and soil conditions. This study aims to determine the plant diversity and composition at three Imperata grasslands in Bogor, Katingan, and Kupang, Indonesia. Data were collected using systematic sampling by establishing quadratic observation plots with size of each plot was 1 x 1 m2. The total number of species found in Imperata grasslands in those three study sites was 81 species, belonging to 68 genera and 30 families. In the Bogor site, the dominant species were Imperata cylindrica, Ageratum conyzoides, and Phyllanthus niruri, while in the Katingan site was dominated by I. cylindrica, Scleria ciliaris, and Cyanthillium cinereum and in the Kupang site was dominated by I. cylindrica and Tridax procumbens. The Imperata grassland in Bogor had low species richness, moderate species diversity, the abundance distribution of each species tends to be uniform, and the occurred species did not tend to dominate. The Katingan and Kupang Imperata grasslands had low species richness, low species diversity, the abundance distribution of each species tends to be uneven, and were more dominated by I. cylindrica. Controlling abundance of I. cylindrica is required in those three research sites in order to stimulate the growth of other plant species, which is in turn to maintain and restore biodiversity.

##plugins.themes.bootstrap3.article.details##

References
Andriana Y, Xuan TD, Quan NV, Quy TN. 2018. Allelopathic potential of Tridax procumbens L. on radish and identification of allelochemicals. Allelo J 43 (2): 223-238.
Aguiar A, Barbosa RI, Barbosa JBF, Mourao MJ. 2014 Invasion of Acacia mangium in Amazonian savannas following planting of forestry. Plant Ecol Divers 1 (2): 359- 369.
Astapati AD, Das AK. 2012. Analysis of vegetation in an Imperata grassland of Barak valley, Assam J Environ Biol 33: 855-860.
Ashton IW, Hyatt LA, Howe KM, Gurevitch J, Lerdau MT. 2005. Invasive species accelerate decomposition and litter nitrogen loss in a mixed deciduous forest. Ecol Appl 15: 1262–1272.
Barbour GM, Burk JK, Pitts WD. 1987 .Terrestrial Plant Ecology. The Benyamin/Cummings Publishing Company. Los Angeles.
Bryson CT, Krutz LJ, Ervin GN, Reddy KN, Byrd Jr. JD. 2010. Ecotype variability and edaphic characteristics for cogongrass (Imperata cylindrica) populations in Mississippi (Review). Invasi Plant Sci and Manag 3: 199–207.
Brewer S. 2008. Declines in plant species richness and endemic plant species in longleaf pine savannas invaded by Imperata cylindrica. Biol Invasi 10: 1257–1264.
Central Bureau of Statistics. 2017. Environment Statistics of Indonesia 2017. Central Bureau of Statistics Republic of Indonesia, Jakarta.
Cerdeira AL, Cantrell CL, Dayan FE, Byrd JD, Duke SO. 2012. Tabanone, a new phytotoxic constituent of cogongrass (Imperata cylindrica). Weed Sci 60, 212–218.
Curtis JT, McIntosh RP. 1950. The interrelations of certain analytic and synthetic phytosociological characters. Ecol 31(3): 435-455.
Daneshgar P, Jose S. 2009. Role of species identity in plant invasions: experimental test using Imperata cylindrica. Biol Invasi 11: 1431–1440.
de Padua LS, Bunyapraphatsara N, Lemmens RHMJ (editor). 1999. Plant Resources of South East Asia No 12 (1). Medicinal and poisonous plants 1. Backhuys Publisher, Leiden, the Netherlands.
Döring M. 2019. Asteraceae Bercht. & J.Presl. in English Wikipedia-Species Pages. Wikimedia Foundation. Checklist dataset https://doi.org/10.15468/c3kkgh accessed via GBIF.org
Dozier H, Gaffney JF, McDonald SK, Johnson ERRL, Shilling DG. 1998. Cogongrass in the United States: history, ecology, impacts and management. Weed Tech 12: 737-743.
Friday KS, Drilling ME, Garrity D. 1999. Imperata Grassland Rehabilitation using Agroforestry and Assisted Natural Regeneration. International Centre for Research in Agroforestry, Southeast Asian Regional Research Programme, Bogor, Indonesia.
Garrity DP, Soekardi M, van Noordwijk M, De La Cruz R, Pathak PS, Gunasena HPM, Van So N, Huijun G, Majid NM. 1997. The Imperata grasslands of tropical Asia: area, distribution, and typology. Agroforest Syst 36: 3-29.
Hashim NR, Hughes FMR . 2010. The responses of secondary forest tree seedlings to soil enrichment in Peninsular Malaysia: an experimental approach. Trop Ecol 51 (2): 173-182.
Hagan DL, Jose S, Lin CH. 2013 Allelopathic exudates of cogongrass (Imperata cylindrica): implications for the performance of native pine savanna plant species in the southeastern US J Chem Ecol 39: 312–322.
Hector A, Dobson K, Minns A, Bazeley-White E, Lawton JH. 2001. Community diversity and invasion resistance: an experimental test in a grassland ecosystem and a review of comparable studies. Ecol Res 16(5): 819–831.
Holly DC, Ervin GN. 2007. Effects of intraspecific seedling density, soil type, and light availability upon growth and biomass allocation in cogongrass (Imperata cylindrica). Weed Technol. 21, 812–819.
Holly DC, Ervin GN, Jackson CR, Diehl SV, Kirker GT. 2009. Effect of an invasive grass on ambient rates of decomposition and microbial community structure: a search for causality. Biol Invasi 11: 1855–1868.
Hubbard, CE. 1944. Imperata cylindrical: Taxonomy, Distribution, Economic Significance, and Control, vol. 7. Imperial Agricultural Bureaux Joint Publication.
Isda MN, Fatonah S, Fitri R. 2013. Potensi ekstrak daun gulma babadotan (Ageratum conyzoides L.) terhadap perkecambahan dan pertumbuhan Paspalum Conjugatum Berg. Al-Kauniyah 6(2): 120-125. (Indonesian)
BMKG - Meteorological, Climatological, and Geophysical Agency. 2019. Climate data. http://www.dataonline.bmkg.go.id
IUCNGISD. 2019. Global Invasive Species Database. http://www.iucngisd.org/gisd Accessed December 29 2019.
Kong C, Liang W, Hu F, Xu X, Wang P, Jiang Y. Xing B. 2004. Allelochemicals and their transformations in the Ageratum conyzoides intercropped citrus orchardsoils. Plant Soil 264: 49–157.
Kong C, Hu F, Xu X, Liang W, Zhang C. 2004. Allelopathic Plants. Ageratum conyzoides L. Allelo J 14(1): 1-12.
Krebs CJ. 1994. Ecology: the experimental analysis of distribution and abundance, Fourth Edition. HarperCollins College Publishers. New York.
Kunarso A, F. Azwar. 2013. Understorey diversity on several plantation forest stands in Benakat, South Sumatra. J Penelitian Hutan Tanaman 10 (2): 85-98.
Lippincott CL. 2000. Effects of I. cylindrical (cogongrass) invasions on fire regimes in Florida sandhill. Nat Areas J 20: 140–149.
Ludwig JA, Reynolds JF. 1988. Statistical Ecology: A Primer on Methods and Computing. John Willey and Sons. Singapore.
Mackinnon K, Hatta G, Halim H, Mangalik A. 1996. The Ecology of Kalimantan: The Ecology of Indonesia Series Vol. III. Periplus Editions (HK) Ltd. Singapore.
MacDonald GE. 2004. Cogongrass (Imperata cylindrica)–biology, ecology, and management. Critical Reviews in Plant Sciences 23: 367–380.
Mattingly WB, Hewlate R, Reynolds HL. 2007. Species evenness and invasion resistance of experimental grassland communities. Oikos 116: 1164-1170.
Magurran AE. 1988. Ecological Diversity and Its Measurement. Croom Helm. London
Mishra SK. 2017. Allelopathic potential of Phyllanthus niruri Linn. on seed germination and seedling growth of rice (Oryza sativa). Res J Pharma Phytochem 9(2): 77-82.
Patterson DT.1980. Shading effects on growth and partitioning of plant biomass in cogongrass (Imperata cylindrica) from shaded and exposed habitats. Weed Sci. 28, 735–740.
Pinto, MF, Nabinger C, Boldrini, II, Ferreira PMA, Setubal RB, Trevisan R, Fedrigo JK, Carassai, IJ. 2013. Floristic and vegetation structure of a grassland plant community on shallow basalt in southern Brazil. Acta Bot Bras 27(1).
Richardson DM, Rejmánek M. 2011. Trees and shrubs as invasive alien species-a global review. Divers Distrib 17: 788–809.
Sajise PE. 1980. Alang-alang (Imperata cylindrica (L.) Beauv.) and upland agriculture. Biotrop 5 : 35 -46.
Shankar U, Tripathi RS, Pandey HN. 1991. Structure and seasonal dynamics of humid tropical grasslands in Meghalaya, India. J Veg Sci 2(5): 711-714.
Shukla RP. 2009. Patterns of plant species diversity across Terai landscape in Northeastern Uttar Pradesh, India. Trop Ecol 50: 111-123.
Sulistyawati E, Fitriana S. 2017. Post fire succession in Tegal Panjang Grassland, Mount Papandayan, West Java, Indonesia. Biodivers 18(3): 1226-1233.
Soerianegara I, Indrawan A. 1998. Ekologi Hutan Indonesia. Bogor (ID): Departemen Kehutanan-IPB. Bogor. (Indonesian)
Central Bureau of Statistics
Tjitrosoedirdjo S. 1995. Notes on Scleria bancana Miq., Scleria ciliaris Nees and Scleria levis Retz. Rheedea 5(2): 103-112.
Wahyuni I, Sulistijorini, Tjitrosoedirdjo S. 2015. Inventory of invasive plant species at Bukit Duabelas National Park and the Vicinity, Jambi, Sumatra. Proceedings Papers of International Conference on Biosciences (ICoBio) 2015 icobio.event.ipb.ac.id 52-61.
Wardani ADK, Darmanti S, Budihastuti R. 2018. llelochemical effect of Ageratum conyzoides L. leaf extract on Soybean [Glycine max (L.) Merr. cv Grobogan] growth. SNPINSA-7 IOP Publishing IOP Conf. Series: Journal of Physics: Conf. Series 1025.
Yassir I, Arbainsyah. 2014. Diversity of plant communities in secondary succession of Imperata Grasslands in Samboja Lestari, East Kalimantan, Indonesia. Indon J For Res 1(2): 139-149.