Genetic diversity in Eddoe Taro (Colocasia esculenta var. antiquorum) from Indonesia based on morphological and nutritional characteristics

##plugins.themes.bootstrap3.article.main##

DELVI MARETTA
https://orcid.org/0000-0002-5203-3432
SOBIR
IS HELIANTI
PURWONO
EDI SANTOSA

Abstract

Abstract. Maretta D, Sobir Helianti I, Purwono, Santosa E. 2020. Genetic diversity in Eddoe Taro (Colocasia esculenta var antiquorum) from Indonesia based on morphological and nutritional characteristics. Biodiversitas 21: 3525-3533. Low yield uniformity and quality due to genetic performance become negative incentives to farmers in Eddoe Taro production. However, genetic evaluation is rarely been reported in this taro type in Indonesia. In this study, 14 eddoe genotypes collected from different regions in Indonesia were evaluated to develop a diversity map for crop improvement and future breeding activities. The genotypes were planted in the open field from September 2018 to March 2019 at the experimental station belonging to LAPTIAB-BPPT, PUSPITEK at South Tangerang District, Indonesia. Morphological and nutritional characters were accessed on the shoot and underground parts. The genotypes exhibited variation in 38 out of 48 characters in which 12 quantitative characters were distinct including oxalate level. The study revealed three findings: (i) Characters related to growth and yield had high genotypic variance coefficients, i.e., sheath length, total petiole length, plant height, number of suckers, corm and cormels weight, (ii) Genotypes clustered into two separate groups as introduced and landraces, and (iii) Landraces had high genetic variation leading to speculation of high clonal variation. Considering the findings, accession S6, S7, S18, S30, and S36 are recommended for further studies in crop improvement purposes.

##plugins.themes.bootstrap3.article.details##

References
Aboubakar, Njintang YN, Scher J, Mbofung CMF. 2008. Physicochemical, thermal properties and microstructure of six varieties of taro (Colocasia esculenta L. Schott) flours and starches. J. Food Eng. 86(2):294–305. Doi:10.1016/j.jfoodeng.2007.10.006.

Akalu ZK, Geleta SH. 2017. Antinutritional levels of tubers of Colocasia esculenta L. Schott (Taro) and Dioscorea alata (Yam) cultivated in Ethiopia. J. Nutr. Food Sci. 07(02): Doi:10.4172/2155-9600.1000585.

Amelia DD, Yumiati Y. 2016. Analysis of satoimo taro farming (Colocasia esculenta var. antiqourum) (Case study in Sukasari Village, Kabawetan subdistrict, Kepahiang District. J Agritepa 2(2):188–198. [Indonesia]

Astuti SD, Andarwulan N, Fardiaz D, Purnomo EH. 2017. The characterization of satoimo taro flour produced by controlled fermentation using L. plantarum and S . cerevisiae. In Proc. Semin. Nas. Pangan, Gizi dan Kesehatan. (November):796–809 [Indonesia]

Bateni E, Tester R, Al-ghazzewi F, Bateni S, Alvani K, Piggott J. 2013. The use of konjac glucomannan hydrolysates (GMH) to improve the health of the skin and reduce acne vulgaris. Am. J. Dermatology Venereol. 2(2):10–14. Doi:10.5923/j.ajdv.20130202.02.

Birketvedt GS, Shimshi M, Erling T, Florholmen J. 2005. Experiences with three different fiber supplements in weight reduction. Med. Sci. Monit. 11(1):PI5-I8.

Chairul C, Chairul S. 2006. Isolation of glucomannan from two species of araceae?: Taro (Colocasia esculenta (L .) Schott) and elephant foot yam (Amorphophallus campanulatus Blumei). Ber. Bio 8(3):171–178.

Das AB, Das A, Pradhan C, Naskar SK. 2015. Genotypic variations of ten Indian cultivars of Colocasia esculenta var. antiquorom Schott. evident by chromosomal and RAPD markers. Caryologia 68(1): 44-54. Doi: 10.1080/00087114.2015.1013335

Deshmukh, S.N., M.S. Basu and P.S. Reddy, 1986. Genetic variability, character association and path coefficient analysis of quantitative traits in Virginia bunch varieties of ground nut. Indian Journal of Agricultural Science, 56: 515-518.

Dewi SK, Dwiloka B, Setiani BE. 2017. Reduction of oxalate levels in taro tubers by adding activated charcoal to the steaming method. J. Apl. Teknol. Pangan 6(2):2. [Indonesia]

Earl, Dent A. and vonHoldt, M. Bridgett. 2012. Structure Harvester: a website and program for visualizing structure output and implementing Evanno method. Conserv. Genet. Res. 4(2): 359-361. Doi:10.1007/s12686-011-9548-7

Effendy, Respatijarti, Waluyo B. 2018. Genetic variability and heritability characters of yield component and yield of physalis (Physalis sp.). Jurnal Agro 5(1): 30-38. Doi:10.15575/1864

Ekowati G, Yanuwiadi B, Azrianingsih R. 2015. A source of glucomannan from edible araceae in East Java. J-PAL 6(1):32–41. [Indonesia]

Evanno G, Regnaut S, Goudet J. 2005. Detecting the number of clusters of individuals using the software structure: A simulation study. Molecular Ecology 14(8):2611-20. Doi: 10.1111/j.1365-294X.2005.02553.x

Ezeabara CA, Okeke C, Amadi J. 2015. Phytochemical, proximate, mineral and vitamin investigations of cormels of five varieties of Colocasia esculenta (L.) Schott found in Anambra State, Southeastern Nigeria. Am. J. Life. Sci. Res. 3(4):273–281.

Eze CE, Nwofia GE. 2016. Variability and inter-relationships between yield and associated traits in taro (Colocasia esculenta (L.) Schott). J. Exp. Agric. Int. 14(2):1–13. Doi:10.9734/JEAI/2016/27053.

Hapsari RT. 2014. Estimation of genetic diversity and correlations between yield components of early maturing green beans. Buletin Plasma Nutfah 20(2): 51-58 [Indonesia]

IPGRI. 1999. Descriptor for Taro (Colocasia esculenta). Rome Italy: International Plant Genetic Resources Institute.

ITPC. 2014. Market Brief Satoimo (Taro). Osaka.

Jalata Z, Ayana A, Zeleke H. 2011. Variability, heritability and genetic advance for some yield and yield related traits in Ethiopian barley (Hordeum vulgare L.) landraces and crosses. International Journal of Plant Breeding and Genetics 5(1):44-52. Doi:10.3923/ijpbg.2011.44.52

Jianchu X, Yongping Y, Yingdong P, Ayad WG, Eyzaguirre PB. 2001. Genetic diversity in taro (Colocasia esculenta Schott, Araceae) in China: An ethnobotanical and genetic approach. Source Econ. Bot. 55(1):14–31.

Kallo R, Satna A, Nappu MB. 2019. Prospects for the development of Japanese satoimo taro in South Sulawesi. Buletin Diseminasi Teknologi Pertanian 1(1): 1-5. [Indonesia]

Keithley J, Swanson B. 2005. Glucomannan and obesity: A critical review. Altern. Ther. I 11(6):30–34.

Laosa A, Darman S, Alam MN. 2016. Analysis of production and income of japanese taro farming system in Tinangkung Village South Tinangkung Sub District of Banggai Kepulauan District. J Agrol. 23(3):174–181.

Meydina A, Barmawi M, Sa’diyah N. 2015. Genetic variability and heritability of agronomy characters of soybean (Glycine max [L.] Merrill) F5 generation as the results of crosses WILIS X B3570. Jurnal Penelitian Pertanian Terapan. 15(3): 200-207

Mulualem T, Michael G. 2013. Study on genotypic variability estimates and interrelationship of agronomic traits for selection of taro (Colocasia esculenta ( L .) Schott ) in Ethiopia. Sky J. Agric. Res. 2(11):154–158.

Naik VV, Patil N, Aparadh VT, Karadge BA. 2014. Methodology in determination of oxalic acid in plant tissue?: A comparative approach. J Glo Trends Pharm Sci 5(2):1662–1672.

Njintang NY, Boudjeko T, Tatsadjieu LN, Nguema-ona E, Scher J, Mbofung CMF. 2011. Compositional, spectroscopic and rheological analyses of mucilage isolated from taro (Colocasia esculenta L . Schott ) corms. J Food Sci Technology. Doi:10.1007/s13197-011-0580-0.

Nurilmala F, Mardiana D. 2019. Nutrients and anti-nutrients content analysis of Bogor taro mutant clone (Colocasia esculenta). IOP Conf. Series: Earth and Environmental Science 334: 012070. Doi:10.1088/1755-1315/334/1/012070

Pitoyo A, Prameta AA, Marsusi, Suratman, Suranto. 2018. Morphological, anatomical and isozyme variability among taro (Colocasia esculenta) accessions from southeastern part of Central Java, Indonesia. Biodiversitas 19(5):1811–1819. Doi:10.13057/biodiv/d190531.

Plucknett DL. 1983. Taxonomy of the genus colocasia. In: Wang JK (eds) A Review of Colocasia esculenta and its potentials. Honolulu (US) : Univ Hawaii. hlm 14-19.

Prana MS. 2007. Study on flowering biology of taro (Colocasia esculenta (L.) Schott.). Biodiversitas 8(1): 63-66.

Pritchard, J.K., M. Stephens and P. Donnelly. 2000. Inference of population structure using multilocus genotype data. Genetics 155: 945–959.

Purseglove JW. 1972. Tropical Crops. Monocotyledons. London (GB) : Longman.

Poerwanto R, Sulaeman A, Wattimena GA. 2012. The history and development of the green revolution, the biotechnology revolution and the sustainable green revolution. In: Poerwanto R, Siregar IZ, Suryani A (eds) Merevolusi Revolusi Hijau. IPB Press, Bogor. [Indonesia]

Rashmi DR, Raghu N, Gopenath TS, Palanisamy P, Bakthavatchalam P, Karthikeyan M, Gnanasekaran A, Ranjith MS, Chandrashekrappa GK, Basalingappa KM. 2018. Taro (Colocasia esculenta): An overview. Journal of Medicinal Plants Studies 6(4): 156-161.

Rosdanelly CNR, Agussabti, Azhar. 2018. The prospect of japanese taro cultivation (Colocasia esculenta var antiquorum) at Agricultural Training Centre Saree, Aceh Besar. J Pertan. Unsyiah 3(1):380–390. Available at http://www.jim.unsyiah.ac.id/JFP.

Santosa E, Mine Y, Nakata M, Lian C, Sugiyama N. 2010. Genetic diversity of cultivated elephant foot yam (Amorphophallus paeoniifolius) in Kuningan, West Java as revealed by microsatellite markers. Journal of Applied Horticulture 12(2): 125-128.

Santosa E, Lian CL, Sugiyama N, Misra RS, Boonkorkaew P, Thanomchit K. 2017. Population structure of elephant foot yams (Amorphophallus paeoniifolius (Dennst.) Nicolson) in Asia. PLoS One 12(6): Doi:10.1371/journal.pone.0180000.

Savage GP, Dubois M. 2006. The effect of soaking and cooking on the oxalate content of taro leaves. International Journal of Food Sciences and Nutrition 57(5-6):376-81. Doi: 10.1080/09637480600855239

Shah RB, Li B, Wang L, Liu S, Li Y, Wei X, Weiping J, Zhenshun L. 2015. Health benefits of konjac glucomannan with special focus on diabetes. Bioact. Carbohydrates Diet. Fibre 5179–187. Doi:10.1016/j.bcdf.2015.03.007.

Singh RK, Chaudhary BD. 1979. Biometrical Methods in Quantitative Genetic Analysis. Revised Edition. Kalyani Publ, New Delhi

Sleper DA, Poehlman JM. 2006. Breeding Field Crop (5th ed.). Blackwell Publishing. Oxford. 424p

Stansfield, W.D. 1983. Theory and Problems of Genetic. 2nd Ed. New York: McGraw-Hill. 217 p.

Sugiyama N, Santosa E, Lee ON, Hikosaka S, Nakata M. 2006. Classification of elephant foot yam (Amorphophallus paeoniifolius) cultivars in Java using AFLP markers. Japanese Journal of Tropical Agriculture 50 (4): 215-218. Doi:10.11248/jsta1957.50.215

Susepah I. 2018. Profile and performance of mindring enterprise in the informal sector, especially the Kuningan migrants in Padukuhan Pandean VII Sidoluhur, Godean, Sleman, Yogyakarta. Jurnal Pemberdayaan Masyarakat 2(1): 87-108. Doi: 10.14421/jpm.2018.021-05

Syarif M, Rivai H. 2007. Examination of oxalate levels in cassava leaves (Manihot utilissima Pohl) using kinetic spectrophotometric method. Sain Tekn Farmasi 12(1):50–52. [Indonesia]

Syukur M, Sujiprihati S, Yunianti R. 2015. Technic of Plant Breeding. 2nd Ed. Penebar Swadaya, Jakarta [Indonesia]

Taufiq FM. 2015. Japanese Taro, Export Value Food Commodity. https://www.kompasiana.com/masfathan66 [Indonesia]

Temesgen M, Retta N. 2015. Nutritional potential, health and foodsecurity benefits of taro Colocasia esculenta ( L .): A Review. Food Sci. Qual. Manag. 3623–31.

Tester RF, Al-ghazzewi FH. 2016. Beneficial health characteristics of native and hydrolysed konjac (Amorphophallus konjac) glucomannan. J Sci FoodAgric 96:3283–3291. doi:10.1002/jsfa.7571.

Vandenbroucke H, Mournet P, Vignes H, Chaïr H, Malapa R, Duval MF, Lebot V. 2016. Somaclonal variants of taro (Colocasia esculenta Schott) and yam (Dioscorea alata L.) are incorporated into farmer's varietal portfolios in Vanuatu. Genetic Resources and Crop Evolution 63: 495-511.

Widjanarko SB, Megawati J. 2015. Comparation between colorimetric and gravimetric methods of glucomannan analysis to konjac. Jurnal Pangan dan Agroindustri 3(4):1584–1588.

Yang D, Yuan Y, Wang L, Wang X, Mu R, Pang J, Xiao J, Zheng Y. 2017. A review on konjac glucomannan gels: Microstructure and application. Int. J. Mol. Sci. 18(11): Doi:10.3390/ijms18112250.

Most read articles by the same author(s)

<< < 1 2 3 4 > >>