Identification of lipase producing bacteria from palm oil sewage sludge processing plant at Malimping, Banten, Indonesia

##plugins.themes.bootstrap3.article.main##

IKA RAHMATUL LAYLY
ANJA MERYANDINI
IS HELIANTI
RIKA INDRI ASTUTI

Abstract

Abstract. Layli IR, Meryandini A, Helianti I, Astuti RI. 2021. Identification of lipase-producing bacteria from palm oil sewage sludge processing plant at Malimping, Banten, Indonesia. Biodiversitas 22: 4512-4524. Lipase (triacylglycerol hydrolase E.C.3.1.1.3) is an enzyme that catalyzes the hydrolysis reaction of triacylglycerol into free fatty acids and glycerols. Lipase has broad application spectrum and unique catalytic mechanism, as one of important enzymes for industries, and almost all enzymes used for industries are originated from microbes. Identification of lipase-producing bacteria from palm oil processing sewage sludge was carried out to determine the potential of isolates and the application of lipase enzymes for industry. This study identified lipase-producing bacteria from the screening and isolation results from palm oil sewage sludge in Malimping-Banten. Two isolates were obtained from screening and isolation results. The morphological and observation and Gram staining method resulted in mlp-1 colony isolate was Gram-negative with basil cell shape, while mlp-2 colony isolate was Gram-positive with basil cell shape. Qualitative test on two isolates in tributyrin agar showed that two isolates produced clear zone or lipase enzyme. Molecular identification using 16SrRNA sequence showed that mlp-1 colony isolate was Chryseobacterium gleum, while mlp-2 colony was Bacillus velezensis. Literature study stated that Chryseobacterium gleum are pathogenic bacteria, resulting in uncontinued identification process, while Bacillus velezensis are non-pathogenic bacteria that have potential for industrial application. Identification of Bacillus velezensis was continued by performing biochemical test and inhibitory test. The continued identification results supported the molecular identification of lipase-producing enzyme for Bacillus velezensis.

##plugins.themes.bootstrap3.article.details##

References
Acharya T. 2016. Oxidative fermentative (OF) test: Principle, procedure and results. Microbiology for Beginners. New Delhi.
Adeniji AA, Loots DT, Olubukola OB. 2019. Bacillus velezensis: phylogeny, useful applications, and avenues for exploitation .App Microbiol Biotech. 1-13.
Aryal S. 2019. Simmons Citrate Agar- Composition, Principle, Uses, Preparation and Result Interpretation. Microbiology for Beginners. New Delhi Press.New Delhi.
Bottger EC. 1996. Approaches for identification of microorganisms. ASM News.,62:247-250.
Baker GC, Smith JJ, Cowan DA. 2003. Review and Re-analysis of Domain-spesific 16S Primers. J Microbiol Methods. 55:541–555.
Bal S, Mishra RR, Rath B, Sahu HK, Thatoi HN. 2009. Characterization and extracellular enzyme activity of predominant marine Bacillus spp. isolated from sea water of Orissa Coast, India. Malaysian J of Microbiology. Vol 5(2) : 87-93.
Beveridge T. 2001. Use of the Gram stain in microbiology. Biotechnic and Histochemistry. 76(3): 111–118.
Baruzzi F, Quintieri.M, Morea M, Caputo L. 2011. Antimicrobial compounds produced by Bacillus spp. And applications in food. Science against microbial pathogens. 1102-111.
Cowan ST, Steel KJ. 1961. Diagnostic tables for the common medical bacteria. J. Hyg.59 (03): 357–373.
Cai H, Archambault M, Prescott JF. 2003. 16S Ribosomal RNA Sequence–based Identification of Veterinary Clinical Bacteria. J Vet Diagn Invest.. 15:465–469.
Cappuccino JC, Sherman N. 2005. Microbiology-A laboratory Manual. 6thEd., Pearson Education. Indian branch. Delhi. 280-285.
Cappoccino JG, Sherman N. 2017. Microbiology: A Laboratory Manual. The Benjamin Cumm. New York.
Chen L .2017. Complete genome sequence of Bacillus velezensis LM2303, a biocontrol strain isolated from the dung of wild yak inhabited Qinghai-Tibet plateau. J Biotechnol .251:124–127.
Chun Byung H, Kyung Hyun K,Sang Eun,Che Ok J. 2019. Genomic and metabolic features of the Bacillus amyloliquefaciens group– B. amyloliquefaciens, B. velezensis, and B. siamensis– revealed by pan-genome analysis. Food Microbiol.77:146–157.
Duza MB, Mastan SA. 2013. Isolation, characterization and screening of enzyme producing bacteria from different soil samples. Int. J Pharma Bio Sci. 4 (2): 813-824.
Donkor ES, Dayle NTKD, Adiku TP. 2014. Bioinformatics with basic local alignment search tool (BLAST) and fas alignment (FASTA). J Bioinfirm Seq Anal. 6 (1): 1-6.
Ed-Har AA, Rahayu W, Gunawan D. 2017. Isolasi dan identifikasi mikroba tanah pendegradasi selulosa dan pektin dari rhizosfer Aquilaria malaccensis. Buletin Tanah dan Lahan. 1 (1): 58-64.
Frank JA, Reich CI, Sharma S, Weisbaum JS, Wilson BA, Olsen GJ. Critical evaluation of two primers commonly used for amplification of 16s rrna genes. J Appl Environ Microbiol.74(8):2461-2470.
Fan B, Blom J, Klenk HP, Borriss R. 2017. Bacillus amyloliquefaciens, Bacillus velezensis, and Bacillus siamensis form an operational group B. amyloliquefaciens within the B. subtilis species complex. Frontiers in Microbiology 8: article ID 22.
Gurung N, Ray S, Bose S, Rai V. 2013. A broader view: Microbial enzymes and their relevance in industries, medicine and beyond. Biomed Research Int. 1-18.
Haba E, Bresco O, Ferrer C, Marqués A, Busquets M, Manresa A. 2000. Isolation of lipase-secreting bacteria by deploying used frying oil as selective substrate. Enzyme Microb Technol. 26: 40–44.
Hasan F, Shah AA, Hameed A. 2006. Industrial applications of microbial lipase. Enzyme Microb Technol. 39:235–251.
Harwood C R, Mouillon JM, Pohl S, Arnau J. 2018. Secondary metabolite production and the safety of industrially important members of the Bacillus subtilis group. FEMS Microbiology Reviews. 42(6): 721-738.
Hans R. 2020. Carbohydrate (glucose) Fermentation Test: Uses, Principle, Procedure and Results. Laboratoryinsider.com
Ilardi P, Fernández J, Avendaño-Herrera R. 2009. Chryseobacterium piscicola sp. nov., isolated from diseased salmonid ?sh. Int. Syst Evol Microbiol. 59(12): 3001–3005.
Jaeger KE, Eggert T. 2002. Lipase for biotechnology. Curr Opin Biotechnol. 13(4):390-397.
Jeong JJ, Lee DW, Park B, Sang M.K, Choi IG, Kim KD. 2017. Chryseobacterium cucumeris sp. nov., an endophyte isolated from cucumber (Cucumis sativus L.) root, and emended description of Chryseobacterium arthrosphaerae. Int. J Syst Evol Microbiol. 67(3): 610–616
Kämpfer P, Dreyer U, Neef A, Dott W, Busse HJ. 2003. Chryseobacterium de?uvii sp. nov., isolated from wastewater. Int. J Syst. Evol. Microbiol. 53 (1): 93–97.
Krairitthichai S,Thongwai N. 2005. Isolation and screening for cellulase producing bacteria. The 34th Congress On Science And Technology Of Thailand. Bangkok,Thailand, oct 31st-nov 2nd 2005.
Lane DJ, Pace B, Olsen GJ, Stahlt DA, Sogint M, Pace NR. 1985. Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci. 82: 6955-6959.
Lau SKP, Woo PCY, Teng JLL, Leung KW, Yuen KY. 2002. Identification by 16s ribosomal RNA gene sequencing of Arcobacter butzleri bacteraemia in a patient with acute gangrenous appendicitis. J Clin Pathol: Mol Pathol. 55:182–185.
Li S, Yang X, Yang S, Zhu M, Wang X. 2012. Technology prospecting on ennzymes: application, marketing and engineering. Comp and Struc Biotechnol J. 2: 225-230.
Locke TS, Keat A, Walker, Mackinnon R. 2013. Microbiology and Infectius Diseases on The Move. Diterjemahkan oleh Akbarini, R. PT. Indeks. Jakarta.
Lee LP, Karbul HM, Citartan M, Gopinath SC, Lakshmipriya T, Tang TH. 2015. Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. Biomed Res Int. doi: 10.1155/2015/820575.
Lee P, Hudzaifah MK, Marimuthu C, Subash CB, Gopinat, Thanavel, Lakshmipriya, Thean HT. 2015. Lipase-secreting Bacillus species in an oil-contaminated habitat: promising strains to alleviate oil pollution. Biomed Res Intl. 1-9.
Li H, Li L, Chi Y, Tian Q, Zhou T, Han C, Zhou Y. 2020. Development of a standardized Gram stain procedure for bacteria and inflammatory cells using an automated staining instrument. Microbiology Open. 9(9):1-10.
Lim WG, Tommy T, Jactty C. 2020. Chryseobacterium indologenes and Chryseobacterium gleum interact and multiply intracellularly in Acanthamoeba castellanii. Experimental parasitology. 1-7.
MacWilliam MP, Min KL. 2006. Luria Broth (LB) and Luria Agar (LA) Media and their uses protocol. ASM. 1-10.
Popoola BM, Onilude A A. 2017. Microorganisms associated with vegetable oil polluted soil. Advances in microbiology. 7: 377-386
Palafox JC, Chavira BER, Bacac NR, Papayanopuolosd IM, Guadalupe V, Moorillon N. 2018. Improved method for qualitative screening of lipolytic bacterial strains. Elsevier. 5: 68-74.
Shen FT, Kämpfer P, Young CC, Lai WA, Arun A. 2005. Chryseobacterium taichungense sp. nov., isolated from contaminated soil. Int J Syst Evol Microbiol. 55(3):1301–1304.
Sunatmo TI. 2007. Eksperimen Mikrobiologi dalam Laboratorium. Ardy Agency. Jakarta.
Sigmon Janie. 2008. The starch hydrolysis test. American society for microbiology Sewalt V, Shanahan D, Gregg L, La Marta J, Carrillo R. 2016. The Generally Recognized as Safe (GRAS) process for industrial microbial enzymes. Industrial Biotechnology. 12(5): 295-302.
Sewalt V, Shanahan D, Gregg L, Marta JL, Carrillo R. 2016. The Generally Recognized as Safe (GRAS) Process for Industrial Microbial Enzymes. Ind Biotechnol.12 (5): 292-305.
Tsouvalas CP, Mousa G, Lee AH, Philip JA, Levine D. 2020. Chryseobacterium gleum Isolation from Respiratory Culture Following Community Acquired Pneumonia. Am J Case Rep. doi: 10.12659/AJCR.921172.
Verma N, Thakur S, Bhatt AK. 2012. Microbial lipases: Industrial application and properties (review). Int Res J Biological Sci. 1(8):88-92.
Venil CK, Nordin N, Zakaria ZA, Ahmad WA. 2014. Chryseobacterium artocarpi sp. nov., isolated from the rhizosphere soil of Artocarpus integer. Int. J Syst Evol Microbiol. 64 (9): 3153–3159.
Weon HY, Kim BY, Yoo SH, Kwon SW, Stackebrandt E., Go SJ. 2008. Chryseobacterium solisp.nov.and Chryseobacterium jejuensesp.nov.,isolated from soil samples from Jeju, Korea. Int. J Syst Evol Microbiol. 58 (2): 470–473.
Wu KY, Yang TX. 2020. A Novel Improved Gram Staining Method Based on the Capillary. Pol J Microbiol. 69 (4): 503-508.
Young CC, Kämpfer P, Shen FT, Lai WA, Arun A. 2005. Chryseobacterium formosense sp. nov., isolated from the rhizosphere of Lactuca sativa L.(garden lettuce). Int. J Syst Evol Microbiol. 55 (1): 423–426.

Most read articles by the same author(s)

1 2 > >>