The phosphorus load and the variation of the trophic states of Cirata Reservoir (West Java, Indonesia) from 1988 to 2017

##plugins.themes.bootstrap3.article.main##

NIKEN T.M. PRATIWI
ZULHAMSYAH IMRAN
INNA PUSPA AYU
ALIATI ISWANTARI
DWI YUNI WULANDARI

Abstract

Abstract. Pratiwi NTM, Imran Z, Ayu IP, Iswantari A, Wulandari DY. 2020. The phosphorus load and the variation of the trophic states of Cirata Reservoir (West Java, Indonesia) from 1988 to 2017. Biodiversitas 21: 4176-4183. Cirata Reservoir was constructed in 1987 between Saguling and Jatiluhur Reservoirs; these are the three man-made cascading lakes in West Java, Indonesia. Cirata Reservoir has been used for floating cage aquaculture activities. The high organic content from the remains of the fish pellets raised the phosphorus (P) load, resulting in the eutrophication of the reservoirs. This research was aimed to assess the P load and the variation of the trophic states of the reservoir from year 1988 to 2017. The trophic states and the nutrients’ conditions of the water were determined using Myxophycean Index. Four groups of phytoplankton were found in the reservoir during observation: Cyanophyceae, Chlorophyceae, Bacillariophyceae, and Dinophyceae. In addition, one group was found in a smaller number of observations: Eugolenophyceae. Although the community structure of the phytoplankton has changed, the Cyanophyceae was always dominant in response against the condition of nutrients, especially P. The P load is closely related to the number of floating cages in the reservoir. This evidence showed that Cirata Reservoir tended to be relatively eutrophic. In general, despite that the P load tended to fluctuate, the trophic states of Cirata Reservoir remained dynamic in relatively high conditions; showed by the oligo-mesotrophic state during its first year of operation, then increased to eutrophic and hypertrophic by the next decade. Although the P load tended to decrease, it remains in the eutrophic condition in the recent time.

##plugins.themes.bootstrap3.article.details##

References
Abell J, Özkundakci D, Hamilton DP. 2010. Nitrogen and phosphorus limitation of phytoplankton growth in New Zealand lakes: Implications for eutrophication control. Ecosystems. DOI: 10.1007/s10021-010-9367-9
Allinger LE, Reavie ED. 2013. The ecological history of Lake Erie as recorded by the phytoplankton community. J Gt Lakes Res 39: 365–382.
Anggraini A, Sudarsono, Sukiya. 2016. Kelimpahan dan tingkat kesuburan plankton di Perairan Sungai Bedog. Jurnal Biologi 5:1-11.
[APHA] American Public Health Association. 2012. Standard Method for the Examination of Water and Wastewater, 22nd ed, edited by E. W. Rice, R. B. Baird, A. D. Eaton and L. S. Clesceri. American Public Health Association/American Water Work Association/Water Environment Federation, Washington.
Ayoade AA, Osuala BO, Adedapo TA. 2019. Physico-chemical parameters, chlorophyll a and phytoplankton community as trophic state indices of two tropical lakes, southwestern Nigeria. Eurasia J Biosci 13: 1-8.
Baho DL, Drakare S, Johnson RK, Allen CR, Angeler DG. 2017. Is the impact of eutrophication on phytoplankton diversity dependent on lake volume/ecosystem size? J. Limnol. DOI: 10.4081/jlimnol.2016.1562
Baker DB, Johnson LT, Confesor Jr. RB, Crumrine JP, Guo T, Manning NF. 2019. Needed: Early-term adjustments for Lake Erie phosphorus target loads to address western basin cyanobacterial blooms. J Gt. Lakes Res 45: 203–211.
Bellinger EG, Sigee DC. 2010. Freshwater Algae: Identification and use as bioindicators. John Wiley and Sons Ltd, Oxford (UK).
Choquette AF, Hirsch RM, Murphy JC, Johnson LT, Confesor Jr RB. 2019. Tracking changes in nutrient delivery to western Lake Erie: Approaches to compensate for variability and trends in streamflow. J Gt. Lakes res. DOI:10.1016/j.jglr.2018.11.012.
Couture R-M, Jannicke MS, Lin Y, Kaste Ø, Haande S, Solheim AL. 2018. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Sci Total Environ. DOI: 10.1016/j.scitotenv.2017.11.303
Ganai AH, Saltanat P. 2014. Effect of physico-chemical conditions on the structure and composition of the phytoplankton community in Wular Lake at Lankrishipora, Kashmir. Biodivers Conserv 6: 71-84.
Hoverman JT, Johnson PTJ. 2012. Ponds and lakes: a journey through the life aquatic. Nat Educ Knowl 3:17.
Jimenez-Martinez, M. 2020. Fatigue of offshore structures: A review of statistical fatigue damage assessment for stochastic loadings. Int J Fatigue 132 (2020) 105327. DOI: 10.1016/j.ijfatigue.2019.105327.
Kamilah F, Rachmawati F, Indah NK. 2014. Keanekaragaman plankton yang toleran terhadap kondisi perairan tercemar di Sumber Air Belerang, Sumber Beceng Sumenep, Madura. LenteraBio 3:226–231.
Katiyar D, Lall AM, Singh B. 2010. Effect of phosphate on growth of diatoms. Indian J Sci Res 1: 103-106.
Kholil, Dharoko TA, Widayati A. 2015. Pendekatan Multi-Dimensional Scaling Untuk Evaluasi Keberlanjutan Waduk Cirata - Propinsi Jawa Barat. J. Manusia dan Lingkungan 22(1): 22-31.
Krzebietke AN, Stawecki K, Pyka JP, Hutorowicz J, Zdanowski B. 2013. Phytoplankton in Relation to Water Quality of a Mesotrophic Lake. Pol. J. Environ. Stud 22(3):793-800.
Lihawa F, Mahmud M. 2017. Evaluasi karakteristik kualitas air Danau Limboto. Jurnal Pengelolaan Sumberdaya Alam dan Lingkungan 7: 260-266.
Lima PF, Sousa MSR, Porfírio A F, Almeida BS, Freire RHF, Santaella ST. 2015. Preliminary analysis on the use of Trophic State Indexes in a Brazilian semiarid reservoir. Acta Sci Biol Sci. DOI: 10.4025/actascibiolsci.v37i3.27160
Maniagasi R, Tumembouw SS, Mundeng Y. 2013. Analisis kualitas fisika kimia air di areal budidaya ikan Danau Tondano Provinsi Sulawesi Utara (Analysis of physical-chemical quality of waters at aquaculture area in Lake Tondano, North Sulawesi Province). Budid Perair 1: 29-37.
McDowell RW, Hamilton DP. 2013. Nutrients and eutrophication: introduction. Mar Freshw Res. DOI: 10.1071/MF13059
Medupin C. 2011. Phytoplankton community and their impact on water quality: an analysis of Hollingsworth lake UK. J Appl Sci Environ Manage 15: 347-350.
Melo TX, Dias JD, Simo˜es NR, Bonecker CC. 2018. Effects of nutrient enrichment on primary and secondary productivity in a subtropical floodplain system: an experimental approach. Hydrobiologia. DOI: 10.1007/s10750-018-3763-0(012
Molisani MM, Sousa BH, Becker H, Moreira MOP, Hijo CAG, de Monte TM, Vasconcellos GH. 2010. Trophic state, phytoplankton assemblages and limnological diagnosis of the Castanhao Reservoir, CE, Brazil. Acta Limnol Bras. DOI: 10.4322/actalb.02201001.
Mu X, Wang F, Sun H, Chu L, Wang J. 2014. Characteristics of phytoplankton community structure and evaluation of trophic state of water body in Bosten Lake. Advanced Materials Research. DOI: 10.4028/www.scientific.net/AMR.864-867.422
Nayek S, Gupta S, Pobi KK. 2018. Physicochemical characteristics and trophic state evaluation of post glacial mountain lake using multivariate analysis. Global J. Environ. Sci. Manage 4(4): 451-464.
Nedovic JR, Hollert H. 2005. Phytoplankton Community and Chlorophyll a as Trophic State Indices of Lake Skadar (Montenegro, Balkan) Environ Sci & Pollut Res. DOI: 10.1065/espr2005.04.241
Nomosatyo S, Lukman. 2011. Ketersediaan Hara Nitrogen (N) Dan Fosfor (P) Di Perairan Danau Toba, Sumatera Utara. LIMNOTEK 19: 127-137.
Novita MZ, Soewardi K, Pratiwi NTM. 2015. Penentuan Daya Dukung Perairan untuk Perikanan Alami (Studi Kasus: Situ Cilala, Kabupaten Bogor). Jurnal Ilmu Pertanian Indonesia (JIPI). 20 (1): 66- 71.
Offem BO, Ayotunde EO, Ikpi GU, Ada FB, Ochang SN. 2011. Plankton-Based Assessment of the Trophic State of Three Tropical Lakes. J Environ Prot. DOI:10.4236/jep.2011.23034
Oliveira M, Machado AV. 2013. The role of phosphorus on eutrophication: a historical review and future perspectives, Environmental Technology Reviews. In Sanyang ML, Jawaid M (eds). Bio-based polymers and nannocomposites: preparation, processing, properties and performance. Springer, Switzerland.
Opiyo SB, Getabu AM, Sitoki LM, Shitandi A, Ogendi GM. 2019. Application of the Carlson’s Trophic State Index for the Assessment of Trophic Status of Lake Simbi Ecosystem, a Deep Alkaline-saline Lake in Kenya. Int J Fish Aquac Stud 7(4): 327-333.
Paztaleniec A, Poniewozik M. 2010. Phytoplankton based assessment of the ecological status of four shallow lakes (Eastern Poland) according to Water Framework Directive – a comparison of approaches. Limologica. 40: 251-259.
Pratiwi NTM, Hariadi S, Ayu IP, Iswantari A, Amalia FJ. 2013. Komposisi Fitoplanton dan status kesuburan perairan Danau Lido, Bogor-Jawa Barat melalui beberapa pendekatan. Jurnal Biologi Indonesia 9(1): 111-120.
Pratiwi NTM, Rahman A, Hariyadi S, Ayu IP, Iswantari A. 2017. Relationship between trophic states and nutrients load in waters surrounding Samosir Island, Lake Toba, North Sumatera. In: Maghfiroh M, Dianto A, et al. Lake Ecosystem Health and Its Resilience: Diversity and Risks of Extinction; Proceedings of the 16th World Lake Conference. Research Center for Limnology, Indonesian Institute of Sciences, Cibinong, 7-11 November 2017. [Indonesian]
Pratiwi NTM, Wardiatno Y, Azizi W, Iswantari A. 2019. Aufwuch Community on Association to Aquatic Plant in Lake Tempe, South Sulawesi. The 2018 International Conference on Biosphere Reserve. IOP Conf. Series: Earth Environ Sci. DOI:10.1088/1755-1315/298/1/012004
Purnamaningtyas SE and Tjahjo DWH. 2008. Pengamatan kualitas air untuk mendukung perikanan Waduk Cirata, Jawa Barat. J. Lit. Perikanan Ind. 14(2):173-180.
Putri MRA, SE Purnamaningtyas. 2013. Variasi kelimpahan fitoplankton di area keramba jaring apung (KJA) Waduk Jatiluhur. Widyariset 16: 349-360.
Qing Q, Gao G, Zhu G W, et al. 2012. Lake eutrophication and its ecosystem response. Chin Sci Bull. DOI: 10.1007/s11434-012-5560-x
Rahman A, Pratiwi NTM, Hariyadi S. 2016. Struktur Komunitas Fitoplankton di Danau Toba, Sumatera Utara. Ilmu Pertan Indonesia 21: 120-127.
Rangel LM, Silva LHS, Rosa P, Roland F, Huszar VLM. 2012. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia 693:13–28
Robarts RD, Tamar Z. 2010. Temperature effects on photosynthetic capacity, respiration, and growth rates of bloom?forming cyanobacteria. J Mar Freshwater Res 21: 391-399.
Ryan EF, Duggan IC, Hamilton DP, Burger DF. 2006. Phytoplankton assemblages in North Island lakes of New Zealand: is trophic state, mixing, or light climate more important? New Zeal J Mar Fresh. DOI: 10.1080/00288330.2006.9517430
Saragih GM, Erizka W. 2018. Keanekaragaman fitoplankton sebagai indikator kualitas air Danau Sipin di Kota Jambi. Daur Lingkung 1: 22-28.
Sayekti RW, Yuliani E, Bisri M, Juwono P, Prasetyorini L, Sonia F, Putri AP. 2015. Studi evaluasi kualitas dan status trofik air Waduk Selorejo akibat erupsi Gunung Kelud untuk budidaya perikanan. Jurnal Teknik Pengairan. 6:133-145.
Shekha YA, Ali LA, Toma JJ. 2017. Assessment of Water Quality and Trophic Status of Duhok Lake Dam. Baghdad Sci Journal. DOI: 10.21123/bsj.2017.14.2.0335
Skwierawski A. 2013. The use of the integrated trophic state index in evaluation of the restored Shallow water bodies. Ecol Chem Eng A. DOI: 10.2428/ecea.2013.20(11)115
Tas B.2012. Diversity of phytoplankton and trophic status in the Gaga Lake, Turkey. EES Technology Part A: Energy Sci Res 30(1): 33-44.
Tjahjo DWH, SE Purnamaningtyas, ES Kartamihardja. 2011. Evaluasi keberhasilan penebaran ikan bandeng (Chanos chanos) di Waduk Ir. H. Djuanda. Bawal 3(4): 231-237.
Warsa A, J Hariyadi, LP Astuti. 2018. Mitigasi Beban Fosfor dari Kegiatan Budidaya dengan Penebaran Ikan Bandeng (Chanos chanos) Di Waduk Cirata, Jawa Barat. Jurnal Teknologi Lingkungan 19(2): 259-266.
Yang Y, Yang J, Zhang X. 2018. A qPCR method to quantify bioavailable phosphorus using indigenous aquatic species. Environ Sci Europe DOI: 10.1186/s12302-018-0163-z.