Profiling indigenous lead-reducing bacteria from Tempe Lake, South Sulawesi, Indonesia as bioremediation agents

##plugins.themes.bootstrap3.article.main##

AHMAD YANI
MOHAMAD AMIN
FATCHUR ROHMAN
ENDANG SUARSINI
WIRA EKA PUTRA

Abstract

Abstract. Yani A, Amin M, Rohman F, Suarsini E, Putra WE. 2020. Profiling indigenous lead-reducing bacteria from Tempe Lake, South Sulawesi, Indonesia as bioremediation agents. Biodiversitas 21: 4778-4786. The pollution of heavy metals by anthropogenic activities in freshwater, especially in lakes, reduces the quality and endangers the existence of aquatic flora and fauna. This happens in Lake Tempe, which is located, in South Sulawesi, Indonesia. The study aimed to evaluate the content of heavy metals, isolation, and identify a lead reduction of indigenous bacteria as candidates for bioremediation agents. It began by examining the level of cadmium (Cd), copper (Cu), and lead (Pb) in seven sampling sites of Tempe Lake. Furthermore, propagation and isolation, morphological observation, laboratory-scale reduction tests, and species identification of potential bacteria reduction Pb were performed by using 16s rDNA. The reduction test to Pb was measured using Atomic Absorption Spectrometry (AAS), and the research data were analyzed using One-Way ANOVA with the Duncan advanced method. The results showed that the Cd, Cu, and Pb content of the seven sampling points exceeded the water quality standard Following the Indonesian Government Regulation (IGR) and WHO standards. Pb has the highest concentration among the other heavy metals in the water sample reaching 0.40 mg/L. Four bacterial isolates could grow on Pb-enriched media (isolates A, B, C, and D). The Bacillus form was found in two different species bacteria (isolate A and D), while the cocci shape was found in two other species (isolate B and C). Those all Gram-negative bacteria were observed to be a reduction to Pb exposure within a bacterial medium. Interestingly, these indigenous bacteria could decrease Pb concentration ranging from 7.45 to 3.48 ppm for seven days. Furthermore, the sequencing data showed that the indigenous bacteria (isolate D) had a 99.90% similarity to the Comamonas testosteroni strain S-2 constructed using Neighbor-joining phylogenetic analysis. Therefore, the indigenous bacteria C. testosteroni strain S-2 from Tempe lake may be proposed as a bioremediation agent to reduce Pb the water contaminants.

##plugins.themes.bootstrap3.article.details##

References
Aisyah, S., & Nomosatryo, S. 2016. Spatial and Temporal Distribution of Nutrient in Lake Tempe, South Sulawesi. Oseanologi Dan Limnologi, 1(2), 31–45.
Ali, H., Khan, E., & Ilahi, I. (2019). Environmental Chemistry and Ecotoxicology of Hazardous Heavy Metals?: Environmental Persistence, Toxicity, and Bioaccumulation. Journal of Chemestry.
Anyanwu, B. O., Ezejiofor, A. N., Igweze, Z. N., & Orisakwe, O. E. 2018. Heavy Metal Mixture Exposure and Effects in Developing Nations: An Update. Toxics, 6(65), 1–32. https://doi.org/10.3390/toxics6040065
Batta, N., Subudhi, S., Lal, B., & Devi, A. 2013. Isolation of a lead tolerant novel bacterial species , Achromobacte r sp . TL-3?: Assessment of bioflocculant activity. Indian Journal of Experimental Biology, 51(1), 1004–1011.
Bello, A. O., Tawabini, B. S., Khalil, A. B., & Boland, C. R. 2018. Phytoremediation of cadmium-, lead- and nickel-contaminated water by Phragmites australis in hydroponic systems, 120(May), 126–133. https://doi.org/10.1016/j.ecoleng.2018.05.035
Bennisse, R., Labat, M., ElAsli, A., Brhada, F., Chandad, F., Lorquin, J., Qatibi, A. I. 2004. Rhizosphere bacterial populations of metallophyte plants in heavy metal-contaminated soils from mining areas in semiarid climate. World Journal of Microbiology and Biotechnology, 20(7), 759–766. https://doi.org/10.1007/s11274-004-5812-2
Black, R., Sartaj, M., Mohammadian, A., & Qiblawey, H. A. M. 2014. Biosorption of Pb and Cu using fixed and suspended bacteria. Biochemical Pharmacology, 2(3), 1663–1671. https://doi.org/10.1016/j.jece.2014.05.023
Carolin, C. F., Kumar, P. S., Saravanan, A., Joshiba, G. J., & Naushad, M. (2017). Efficient Techniques for the Removal of Toxic Heavy Metals from Aquatic Environment?: A Review. Journal of Environmental Chemical Engineering, 5(3), https://doi.org/10.1016/j.jece.2017.05.029
Chen, Z., Pan, X., Chen, H., Lin, Z., & Guan, X. 2015. Investigation of lead(II) uptake by Bacillus thuringiensis 016. World Journal of Microbiology and Biotechnology, 31(11), 1729–1736. https://doi.org/10.1007/s11274-015-1923-1
Cheyne, C. A. L., Thibodeau, A. M., Slater, G. F., & Bergquist, B. A. 2017. Lead isotopes as particulate contaminant tracers and chronostratigraphic markers in lake sediments in northeastern North America. Chemical Geology, 477(20), 47–57. https://doi.org/10.1016/j.chemgeo.2017.11.043
Deepa, Raveen, Venkatesan, Arivoli, & Samuel. 2016. Seasonal variations of physicochemical parameters of Korattur lake, Chennai, Tamil Nadu, India. International Journal of Chemical Studies IJCS, 4(43), 116–123. Retrieved from http://www.chemijournal.com/archives/2016/vol4issue3/PartB/4-3-29.1-842.pdf
Dey, U., Chatterjee, S., & Mondal, N. K. 2016. Isolation and characterization of arsenic-resistant bacteria and possible application in bioremediation. Biotechnology Reports, 10, 1–7. https://doi.org/10.1016/j.btre.2016.02.002
Dixit, R., Malaviya, D., Pandiyan, K., Singh, U. B., Sahu, A., Shukla, R., Paul, D. 2015. Bioremediation of Heavy Metals from Soil and Aquatic Environment: An Overview of Principles and Criteria of Fundamental Processes. Sustainability, 7, 2189–2212. https://doi.org/10.3390/su7022189
Gadd, G. (2017). Heavy Metal Pollutants?: Environmental and Biotechnological Aspects. Reference Module in Life Sciences. Elsevier. https://doi.org/10.1016/B978-0-12-809633-8.13057-2
Gafur, N. A., Sakakibara, M., Sano, S., & Sera, K. 2018. A Case Study of Heavy Metal Pollution in Water of Bone River by Artisanal Small-Scale Gold Mine. Water, 10(1507), 1–10. https://doi.org/10.3390/w10111507
Garcha, S., Verma, N., & Brar, S. K. 2016. Isolation, characterization and identification of microorganisms from unorganized dairy sector wastewater and sludge samples and evaluation of their biodegradability. Water Resources and Industry, 16, 19–28. https://doi.org/10.1016/j.wri.2016.10.002
Ghane, M., Tabandeh, F., Bandehpour, M., & Ghane, M. 2013. Isolation and characterization of a heavy metal resistant Comamonas sp . from industrial effluents. Iranian Journal of Science & Technology, 37(A2), 173–179.
Gohil, N., Singh, V., & Ram?, R. 2019. Recent Advances, Challenges, and Opportunities in Bioremediation of Hazardous Materials. In Phytomanagement of Polluted Sites (pp. 517–568). Elsevier. https://doi.org/10.1016/B978-0-12-813912-7.00021-1
H.Khazaal, S., F.Al-Azawi, K., A.Eassa, H., H.Khasraghi, A., R.Alfatlawi, W., & M.Al-Gebori, A. 2019. Study the level of Some Heavy Metals in Water of Lake Habbaniyah in Al-Anbar-Iraq. In Energy Procedia (Vol. 157, pp. 68–74). Elsevier B.V. https://doi.org/10.1016/j.egypro.2018.11.165
Haerunnisa, H., Budimawan, B., Alam Ali, S., & Burhanuddin, A. I. 2015. Management Model of Sustainability Fisheries at Lake Tempe, South Sulawesi, Indonesian. International Journal of Science and Research (IJSR), 4(5), 2319–7064. Retrieved from http://repository.unhas.ac.id/handle/123456789/19260
Igiri, B. E., Okoduwa, S. I. R., Idoko, G. O., Akabuogu, E. P., Adeyi, A. O., & Ejiogu, I. K. 2018. Toxicity and Bioremediation of Heavy Metals Contaminated Ecosystem from Tannery Wastewater?: A Review. Journal of Toxicology.
Irawati, W., Ompusunggu, N. P., Susilowati, D. N., & Yuwono, T. 2019. Molecular and physiological characterization of indigenous copper-resistant bacteria from Cikapundung River, West Java, Indonesia. Biodiversitas, 20(2), 344–349. https://doi.org/10.13057/biodiv/d200206
Jan, A. T., Azam, M., Siddiqui, K., Ali, A., & Choi, I. 2015. Heavy Metals and Human Health?: Mechanistic Insight into Toxicity and Counter Defense System of Antioxidants. International Journal of Molecular Sciences, 16(12), 29592–29630. https://doi.org/10.3390/ijms161226183
Jiang, Y., Ye, Y., & Guo, X. 2019. Spatiotemporal variation of soil heavy metals in farmland influenced by human activities in the Poyang Lake region, China. Catena, 176, 279–288. https://doi.org/10.1016/j.catena.2019.01.028
Junior, R., Aka, N., & Babalola, O.O. 2017. Identification and characterization of Cr- , Cd- , and Ni-tolerant bacteria isolated from mine tailings. Bioremediation Journal, 21(1), 1–19. https://doi.org/10.1080/10889868.2017.1282933
Kang, C., Ji, S., Shin, Y., Han, S., & Nam, I. 2015. Bioremediation of lead by ureolytic bacteria isolated from soil at abandoned metal mines in South Korea. Ecological Engineering, 74, 402–407. https://doi.org/10.1016/j.ecoleng.2014.10.009
Krieg N.R, & Holt J.G. 1984. Bergy’s Manual of Systematic Bacteriology Vol 1. Baltimore: The Williams and Wilkins Co. London.
Li, Y., Zhou, S., Zhu, Q., Li, B., Wang, J., Wang, C., Wu, S. (2018). One-century sedimentary record of heavy metal pollution in western Taihu Lake, China. Environmental Pollution, 240, 709–716. https://doi.org/10.1016/j.envpol.2018.05.006
Lu, X., Kruatrachue, M., & Pokethitiyook, P. 2004. Removal of Cadmium and Zinc by Water Hyacinth, Eichhornia crassipes Xiaomei. ScienceAsia, 30(1), 93–103. https://doi.org/10.2306/scienceasia1513-1874.2004.30.093
Naik, M. M., Khanolkar, D., & Dubey, S. K. 2013. Lead-resistant Providencia alcalifaciens strain 2EA bioprecipitates Pb+2 as lead phosphate. Letters in Applied Microbiology, 56(2), 99–104. https://doi.org/10.1111/lam.12026
Naik, Milind Mohan, & Dubey, S. K. 2013. Lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicology and Environmental Safety, 98(1), 1–7. https://doi.org/10.1016/j.ecoenv.2013.09.039
Nirmal Kumar, J. I., Soni, H., Kumar, R. N., & Bhatt, I. 2008. Macrophytes in phytoremediation of heavy metal contaminated water and sediments in urban inland ponds. Turkish Journal of Fisheries and Aquatic Sciences, 8, 193–200.
Orsini, J., Tam, E., Hauser, N., Rajayer, S., & Report, C. 2014. Polymicrobial Bacteremia Involving Comamonas testosteroni Jose. Case Reports in Medicine, 3(1), 15–18.
Pan, X., Chen, Z., Li, L., Rao, W., Xu, Z., & Guan, X. 2017. Microbial strategy for potential lead remediation: a review study. World Journal of Microbiology and Biotechnology, 33(2), 1–7. https://doi.org/10.1007/s11274-017-2211-z
Pance, R., Sarrafah, A., Manurung, H., Harahap, T. N., Retnowati, I., Rachmiati, S., Rustadi, W. C. 2014. Gerakan Penyelamatan Danau Danau Tempe. Jakarta: Kementerian Lingkungan Hidup.
Parmar, T. K., Rawtani, D., & Agrawal, Y. K. 2016. Bioindicators?: the natural indicator of environmental pollution. Frontiers in Life Science, 9(2), 110–118. https://doi.org/10.1080/21553769.2016.1162753
Rijal, M., Amin, M., Rochman, F., Suarsini, E., & Alim N, N. 2015. The quality of physical and chemical the waters of the arbes Ambon. International Journal of Multidisiplinary Research and Development, 2(4), 87–92.
Sanjay, M. S., Sudarsanam, D., Raj, G. A., & Baskar, K. 2018. Isolation and identification of chromium reducing bacteria from tannery effluent. Journal of King Saud University - Science. https://doi.org/10.1016/j.jksus.2018.05.001
Siunova, T. V, Siunov, A. V, Kochetkov, V. V, & Boronin, A. M. 2009. The cnr -Like Operon in Strain Comamonas sp . Encoding Resistance to Cobalt and Nickel. Russian Journal of Genetics, 45(3), 336–341. https://doi.org/10.1134/S1022795409030053
Sowmya, M., & Hatha, A. A. M. 2017. Cadmium and Lead Tolerance Mechanisms in Bacteria and the Role of Halotolerant and Moderately Halophilic Bacteria in Their Remediation. Taylor & Francis. https://doi.org/10.1201/9781315153353-40
Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30(12), 2725–2729. https://doi.org/10.1093/molbev/mst197
Theiman, W. ., & Palladino, M. A. 2013. Introduction to Biotechnology (Third Edit). New York San Fransisco: Person Education.
Wang, H., Zhang, H., & Cai, G. 2011. An application of phytoremediation to river pollution remediation. Procedia Environmental Sciences, 10(PART C), 1904–1907. https://doi.org/10.1016/j.proenv.2011.09.298
Yang, T., Chen, M., & Wang, J. 2015. Genetic and chemical modification of cells for selective separation and analysis of heavy metals of biological or environmental significance. Trends in Analytical Chemistry, 66, 90–102. https://doi.org/10.1016/j.trac.2014.11.016
Yani, A., Amin, M., Rohman, F., Suarsini, E., & Haerunnisa. (2019). Water Quality and Pollution Index of Lake Tempe In Sounth Sulawesi Indonesia. Pollution Research, 38(3), 54–60.
Yin, K., Wang, Q., Lv, M., & Chen, L. 2018. Microorganism remediation strategies towards heavy metals. Chemical Engineering Journal, (August), 1–11. https://doi.org/10.1016/j.cej.2018.10.226
Zheng, S., Su, J., Wang, L., Yao, R., Wang, D., Deng, Y., Wang, G. 2014. Selenite reduction by the obligate aerobic bacterium Comamonas testosteroni S44 isolated from a metal-contaminated soil. BMC Microbiology, 14(204), 1–13. https://doi.org/10.1186/s12866-014-0204-8