Community structure of arboreal and soil-dwelling arthropods in three different rice planting indexes in freshwater swamps of South Sumatra, Indonesia




Abstract. Karenina T, Herlinda S,  Irsan C, Pujiastuti Y, Hasbi, Suparman, Lakitan B, Hamidson H, Umayah A. 2020. Community structure of arboreal and soil-dwelling arthropods in three different rice planting indexes in freshwater swamps of South Sumatra, Indonesia. Biodiversitas 21: 4839-4849.  Differences in the index of rice planting can cause differences in the structure of the arthropod community. This study aimed to characterize the community structure of the arboreal and soil-dwelling arthropods in the three different rice planting indexes (PI) in the freshwater swamps of South Sumatra.  Sampling of the arthropods using D-vac and pitfall traps was conducted in the three different rice planting, namely one (PI-100), two (PI-200), and three (PI-300) planting indexes of the rice. The results of the study showed that the dominant predatory arthropod species in the rice fields were Pardosa pseudoannulata, Tetragnatha javana, Tetragnatha virescens, Pheropsophus occipitalis, Paederus fuscipes, and the dominant herbivorous insects were Leptocorisa acuta, Nilavarpata lugens, and Sogatella furcifera. The abundance of arboreal predatory arthropods was the highest in the PI-300 rice and the lowest in the PI-100 rice.    The abundance of soil-dwelling arthropods was the highest in the rice PI-100, and low in the rice PI-200 and PI-300, but the rice PI-100 had the highest abundance of the herbivorous insects. The rice PI-300 was the most ideal habitats to maintain the abundance and the species diversity of the arboreal predatory arthropods. Thus, the rice cultivation throughout the year was profitable in conserving and maintaining the abundance and species diversity of the predatory arthropods.


Akhil SV, Thomas SK. 2018. Bombardier beetles (Coleoptera: Carabidae: Brachininae) of India – notes on habit, taxonomy and use as natural bio-control agents. In: Frontiers in biological research pp 1–25.
Ashrith KN, Sreenivas AG, Guruprasad GS, Hanchinal SG, Chavan I. 2017. Insect diversity: a comparative study in direct seed and transplanted rice ecosystem. J Entomol Zool Stud 5 (6): 762–765.
Baehaki SE. 2017. The Roles of predators suppress brown planthopper, Nilaparvata lugens Stal in the ricefields. Sch J Agric Vet Sci 4 (11): 452–460. DOI: 10.21276/sjavs.2017.4.11.3
Blubaugh CK, Kaplan I. 2015. Tillage compromises weed seed predator activity across developmental stages. Biol Control 81: 76–82. DOI: 10.1016/j.biocontrol.2014.11.007.
Burks JM, Philpott SM. 2017. Community and ecosystem ecology local and landscape drivers of parasitoid abundance, richness, and composition in Urban Gardens. Community Ecosyst Ecol 46 (2): 201–209. DOI: 10.1093/ee/nvw175.
Cano-Calle D, Arango-Isaza RE, Saldamando-Benjumea CI. 2015. Molecular identification of Spodoptera frugiperda (Lepidoptera: Noctuidae) corn and rice strains in Colombia by using a PCR-RFLP of the Mitochondrial Gene Cytochrome Oxydase I (COI) and a PCR of the Gene FR (for rice). Ann Entomol Soc Am 108 (2): 172–180. DOI: 10.1093/aesa/sav001.
Daravath V, Chander S. 2017. Niche regulation between brown planthopper (BPH) and white backed planthopper (WBPH) in association with their natural enemy population in the rice ecosystem. J Entomol Zool Stud 5 (5): 513–517.
Deshwal R, Sachan SK, Singh G, Singh DV, Singh G, Chand P. 2019. Seasonal abundance of insect pests associated with paddy crop in western plain zone of Uttar Pradesh. J Entomol Zool Stud 7 (3): 1347–1350.
Dharshini GM, Siddegowda K. 2015. Reaction of rice landraces against brown planthopper Nilaparvata lugens Stal. The Ecoscan 9 (1&2): 605–609.
Dionisio AC, Rath S. 2016. Chemosphere abamectin in soils: Analytical methods, kinetics, sorption and dissipation. Chemosphere 151: 17–29. DOI: 10.1016/j.chemosphere.2016.02.058.
Dominik C, Seppelt R, Horgan FG, Marquez L, Marquezf L, Settele J, Vaclavik T. 2017. Regional-scale effects override the influence of fine-scale landscape heterogeneity on rice arthropod communities. Agric Ecosyst Environ 246: 269–278. DOI: 10.1016/j.agee.2017.06.011.
Frank JH, Erwin TL, Hemenway RC. 2009. Economically beneficial ground beetles: The specialized predators Pheropsophus aequinoctialis (L.) and Stenaptinus jessoensis (Morawitz): Their laboratory behavior and descriptions of immature stages (Coleoptera, Carabidae, Brachininae). Zookeys 36: 1–36. DOI: 10.3897/zookeys.14.188.
Hanif KI, Herlinda S, Irsan C, Pujiastuti Y. 2020. The impact of bioinsecticide overdoses of Beauveria bassiana on species diversity and abundance of not targeted arthropods in South Sumatra (Indonesia) freshwater swamp paddy. Biodiversitas 21 (5): 2124–2136. DOI: 10.13057/biodiv/d210541.
Harbi A, Beitia F, Ferrara F, Chermiti B, Sabater-muñoz B. 2018. Functional response of Diachasmimorpha longicaudata (Ashmead) over Ceratitis capitata (Wiedemann): influence of temperature, fruit location and host density. Crop Prot 109: 115–122. DOI: 10.1016/j.cropro.2018.03.010.
Heinrichs EA, Nwilene FE, Stout MJ, Hadi BAR, Freita T. 2016. Rice insect pests and their management. Burleigh Dodds Science Publishing: London.
Herlinda S, Alesia M, Irsan C, Hasbi, Suparman, Anggraini E, Arsi. 2020a. Impact of mycoinsecticides and abamectin applications on species diversity and abundance of aquatic insects in rice fields of freshwater swamps of South Sumatra, Indonesia. Biodiversitas 21 (7): 3076–3083. DOI: 10.13057/biodiv/d210727.
Herlinda S, Karenina T, Irsan C, Pujiastuti Y. 2019a. Arthropods inhabiting flowering non-crop plants and adaptive vegetables planted around paddy fields of freshwater swamps of South Sumatra, Indonesia. Biodiversitas 20 (11): 3328–3339. DOI: 10.13057/biodiv/d201128.
Herlinda S, Prabawati G, Pujiastuti Y, Susilawati, Karenina T, Hasbi, Irsan C. 2020b. Herbivore insects and predatory arthropods in freshwater swamp rice field in South Sumatra, Indonesia sprayed with bioinsecticides of entomopathogenic fungi and abamectin. Biodiversitas 21 (8): 3755–3768. DOI: 10.13057/biodiv/d21083.
Herlinda S, Yudha S, Thalib R. Khodijah, Suwandi, Lakitan B, Verawaty M. 2018. Species richness and abundance of spiders inhabiting rice in fresh swamps and tidal lowlands in South Sumatra, Indonesia. J ISSAAS 24 (1): 82–93.
Herlinda S, Yusticia SR, Irsan C, Hadi BAR, Lakitan B, Verawaty M, Hasbi. 2019b. Abundance of arthropods inhabiting canopy of rice cultivated using different planting methods and varieties. J Biopest 12 (1): 7–18.
Huang HJ, Bao YY, Lao SH, Huang XH, Ye YZ, Wu JX, Xun HJ, Zhou XP, Zhang CX. 2015. Rice ragged stunt virus- induced apoptosis affects virus transmission from its insect vector, the brown planthopper to the rice plant. Sci Rep 1–14. DOI: 10.1038/srep11413.
Jauharlina J, Hasnah H, Taufik MI. 2019. Diversity and community structure of arthropods on rice ecosystem in Aceh. Agrivita J Agric Sci 1: 316–324. DOI: 10.17503/agrivita.v41i2.2160.
Kawanishi M, Mimura N. 2013. Rice farmers’ response to climate and socio-economic impacts: a case study in North Sumatra, Indonesia. J Agric Meteorol 69: 9–22.
Kardol P, Long JRD. 2019. How anthropogenic shifts in plant community composition alter soil food webs [version 1?; peer review?: 2 approved]. F1000Research 2018 7: 1–12. DOI: 10.12688/f1000research.13008.1.
Karenina T, Herlinda S, Irsan C, Pujiastuti Y. 2019. Abundance and species diversity of predatory arthropods inhabiting rice of refuge habitats and synthetic insecticide application in freshwater swamps in South Sumatra, Indonesia. Biodiversitas 20 (8): 2375-2387. DOI: 10.13057/biodiv/d200836
Karenina T, Herlinda S, Irsan C, Pujiastuti Y. 2020. Arboreal entomophagous arthropods of rice insect pests inhabiting adaptive vegetables and refugia in freshwater swamps of South Sumatra. Agrivita J Agric Sci Agric Sci 42 (2): 214–228. DOI: 10.17503/agrivita.v0i0.2283.
Kousika J, Kuttalam S, Kumar MG. 2017. Evaluation on the effect of tetraniliprole 20 SC , a new chemistry of pyridine derivative to the rice arthropod biodiversity. J Entomol Zool Stud 5 (4): 133–143.
Kumar A, Ram L, Singh B. 2018. Cultivation methods impact on predators of rice pests. J Entomol Zool Stud 6 (2): 970–974.
Lakitan B, Lindiana L, Widuri LI, Kartika K, Siaga E, Meihana M. 2019. Inclusive and ecologically-sound food crop cultivation at tropical non-tidal. Agrivita 41 (1): 23–31. DOI: 10.17503/agrivita.v40i0.1717.
Lisha JM, Baskaran V, Vijay S, Vishnu M. 2020. Status of insect pests in direct seeded and transplanted rice. J Entomol Zool Stud 8 (2): 1104–1107.
Litsinger JA, Barrion AT, Canapi BL, Lumaban MD, Cruz CG dela, Pantua PC. 2011. Philippine rice stemborers: a review. Philipp Ent 25 (1): 1–47.
Magurran AE. 1988. Ecological diversity and its measurement. Chapman and Hall: London.
Margono BA, Bwangoy JRB, Potapov PV, Hansen MC. 2014. Mapping wetlands in Indonesia using landsat and PALSAR data-sets and derived topographical indices. Geo-Spatial Inf Sci 17 (1): 60–71. DOI: 10.1080/10095020.2014.898560.
Mashavakure N, Mashingaidze AB, Musundire R, Nhamo N, Gandiwa E, Thierfelder C, Muposhi VK. 2019. Soil dwelling beetle community response to tillage, fertilizer and weeding intensity in a sub-humid environment in Zimbabwe. Appl Soil Ecol 135: 120–128. DOI: 10.1016/j.apsoil.2018.12.001.
Masika FB, Masanza M, Aluana G, Barrigossi AF, Kizito EB. 2017. Abundance, distribution and effects of temperature and humidity on arthropod fauna in different rice ecosystems in Uganda. J Entomol Zool Stud 5 (5): 964–973.
Prabawati G, Herlinda S, Pujiastuti Y. 2019. The abundance of canopy arthropods in South Sumatra (Indonesia) freshwater swamp main and ratooned rice applied with bioinsecticides and synthetic insecticide. Biodiversitas 20 (10): 2921–2930. DOI: 10.13057/biodiv/d201021.
Radermacher N, Hartke TR, Villareal S, Scheu S. 2020. Spiders in rice?paddy ecosystems shift from aquatic to terrestrial prey and use carbon pools of different origin. Oecologia 192: 801–812. DOI: 10.1007/s00442-020-04601-3.
Rahman MM, Thompson JR, Flower RJ, Rahman MM, Thompson JR, Flower RJ. 2020. Hydrological impacts of climate change on rice cultivated riparian wetlands in the Upper Meghna River Basin (Bangladesh and India). Hydrol Sci J 65: 33–56. DOI: 10.1080/02626667.2019.1676427.
Rusch A, Delbac L, Muneret L, Thiéry D. 2015. Organic farming and host density affect parasitism rates of tortricid moths in vineyards. Agric Ecosyst Environ 214: 46–53. DOI: 10.1016/j.agee.2015.08.019.
Settle WH, Ariawan H, Astuti ET, Cahyana W, Hakim AL, Hindayana D, Lestari AS, Pajarningsih. 1996. Managing tropical rice pests through conservation of generalist natural enemies and alternative prey. Ecology 77 (7): 1975–1988.
Singh M, Mishra BB, Tripathi C. 2017. Effect of host’s Helicoverpa armigera (Hubner) larval age on the numerical response of the parasitoid Campoletis chlorideae Uchida. J Entomol Zool Stud 5(4): 233–237.
Syahrawati M, Martono E, Putra NS, Purwanto BH. 2015. Predation and competition of two predators (Pardosa pseudoannulata and Verania lineata) on different densities of Nilaparvata lugens in laboratory. Int J Sci Res 4 (6): 610–614.
Whyte R, Anderson G. 2017. A field guide to spiders of Australia. CSIRO Publishing: Queensland.
Wood SA, Karp DS, Declerck F, Kremen C, Naeem S, Palm CA. 2015. Functional traits in agriculture: agrobiodiversity and ecosystem services. Trends Ecol Evol 20: 1–9. DOI: 10.1016/j.tree.2015.06.013.
Zhang J, Zheng X, Jian H, Qin X, Yuan F, Zhang R. 2013. Arthropod biodiversity and community structures of organic rice ecosystems in Guangdong Province, China. Florida Entomol 96: 1–9. DOI: 10.1016/j.pestbp.2015.10.003.

Most read articles by the same author(s)

1 2 3 4 > >>