Characterization of Arthrospira platensis cultured in wastewater of Clarias catfish farming media: DNA barcode, helical form, growth, and phycocyanin

##plugins.themes.bootstrap3.article.main##

MARINI WIJAYANTI
M. SYAIFUDIN
YULISMAN
YULLY NURIANTI
ANITA HIDAYANI
NUNI GOFAR

Abstract

Abstract. Wijayanti M, Syafudin M, Yulisman, Nurianti Y, Hidayani A, Gofar N. 2020. Characterization of Arthrospira platensis cultured in wastewater of Clarias catfish farming media: DNA barcode, helical form, growth, and phycocyanin. Biodiversitas 21: 5872-5883. Arthrospira production technology in catfish waste media can be an alternative to reduce environmental pollution. However, some environmental factors such as nutrition, light, and water content can influence characterization of Arthrospira at the genetic and physiologic level. Arthrospira platensis is one of the phycocyanin-producing cyanobacteria and can be cultured using catfish culture wastewater. Water quality especially pH and salinity can effect of growth rate and residue of phycocyanin from Arthrospira platensis. This study aimed to identify the species and morphological forms of Arthrospira cultured using technical fertilizer and waste media, as well as to know the phylogenetic trees between species in this study and the GeneBank based on the 16S rRNA gene, and determine the optimum of pH and salinity required in the medium of catfish culture wastewater to phycocyanin maximum production of Arthrospira. The optimation of pH and salinity method used Completely Randomized Design (CRD) factorial with 2 factors consisting of the first factor with 3 treatments and the second factor with 4 treatments and 3 replications. The first factor was pH of culture medium i.e. pH 6.5 ± 0.2, pH 8.5 ± 0.2 and pH 10.5 ± 0.2. The second factor was salinity of culture medium, that was salinity 0 ppt (parts per thousand/‰), 10 ppt, 20 ppt, and 30 ppt. Parameters observed in Arthrospira include density, growth rate, rendement of phycocyanin, and decreased total nitrogen and phosphate content in culture media. The results showed that morphology Arthrospira cultured on technical fertilizer media (AF) had a longer and helix filament compared to Arthrospira cultured on waste media (AW) which showed several linear and shorter filaments. Both samples have a genetic distance of 0.068 (6.8%). Phylogenetic trees indicated that AF had a close relationship with Arthrospira platensis petH from Japan (bootstrap value 95%). While AW formed a separate sub-cluster of AF isolates and Arthrospira platensis petH from Japan (bootstrap value of 85%). The best treatment in this study was P2S3 (pH 8.5 ± 0.2 with salinity 20 ppt), which produced 0.867 grams maximum density, growth rate of 22.026 %.day-1 and 11.347 mg.g1 rendement of phycocyanin.

##plugins.themes.bootstrap3.article.details##

References
Adamowicz SJ. 2015. International Barcode of Life: Evolution of a global research community. Genome 58: 151–162
Astiani F, Dewiyanti I, dan Mellisa S. 2016. Pengaruh kultur yang berbeda terhadap laju pertumbuhan dan biomassa Spirulina sp. Jurnal Ilmiah Mahasiswa Kelautan dan Perikanan Unsyiah. 1: 441-447
Ballot A. Dadheech PK. and Krienitz L. 2004. Phylogenetic relationship of Arthrospira, Phormidium and Spirulina strain from Kenyan and Indian waterbodies. Algological studies 113: 37-56
Bassin JP, Pronk M, Muyzer G, Kleerebezem R, Dezotti M, and Van-loosdrecht MCM. 2011. Effect of elevated salt concentration on the aerobic granular sludge process: Linking Microbial activity with microbial community structure. Applied and Environmental Microbiology 7 (22): 7942-7953.
Becquer A, Trap J, Irshad U, Ali MA, and Claude P, 2014. From soil to plant, the journey of P through trophic relationships and ectomycorrhizal association. Frontiers in Plant Science 5: 1-7.
Bennett A, and Bogorad L, 1973. Complementary chromatic adaptation in a filamentous blue-green alga. The Journal of Cell Biology, 58: 419-435.
Borowitzka MA, Beardal J, and Raven JA. 2016. The Physiology of Microalgae. London: Springer International Publishing Switzerland.
Boyd CE. 1990. Water Quality in Ponds for Aquaculture. Birmingham, Alabama : Birmingham Publishing Co.
Breen P. 1990. A mass balance method for assessing the potential of artificial wetlands for wastewater treatment. Water Research, 24 (6): 689-697
Cerozi B and Fitzsimmons KM. 2016. The effect of pH on phosphorus availability and speciation in an aquaponics nutrient solution. Bioresource Technology 219: 778-781.
Cifferi O. 1983. Spirulina, the edible organism. American Society for Mycrobiology 47 (4): 551-578.
Davis CC, 1955. The marine and freshwater plankton. Michigan State University Press, Michigan. US. 561 p
Gersberg RM, Elkins BV, Lyon SR and Goldman CR. 1986. Role of aquatic plants in wastewater treatment by artificial wetlands. Wat. Res, 20 (3) : 363 - 368.
Guiry MD. in Guiry MD & Guiry GM. 2020. AlgaeBase. World-wide electronic publication, National University of Ireland, Galway. http://www.algaebase.org; searched on 14 February 2020.
Hall BG. 2001. Phylogenetic Trees Made Easy: A How - To Manual for Molecular Biologists. Sinauer Associates. Inc. Sunderland. Massachusetts, USA.
Hariyati R. 2008. Pertumbuhan dan biomassa Spirulina sp dalam skala laboratoris. BIOMA, 10 (1): 19-22.
Hillis DM. and Bull JJ. 1993. An empirical test of bootstrapping as a method for assessing confidence in phylogenetic analyses. Syst. Biol 42: 182–192.
Hsieh-Lo M, Castillo G, Ochoa-Becerra MA, Mojica L. 2019. Phycocyanin and phycoerythrin: Strategies to improve production yield and chemical stability. Algal Research, 42: 101600
Hu Q. 2004. Environmental Effects on Cell Composition. Handbook of Microalgal culture: Biotechnology and Applied Phycology Edited by Amos Richmond. Australia: Blackwell Science Ltd.
Hua-Seng H, Hai-Li W, and Bang-Qin, H, 1995. The availability of dissolved organic phosphorus compounds to marine phytoplankton. Chin J Oceanol Limnol. 13 (2): 169-176.
Ismaiel MMS, El-Ayouty YM, and Piercey-Normore M, 2016. Role of pH on antioxidants production by Spirulina (Arthrospira) platensis. Brazilian Journal of Microbiology. 47(2): 298-304.
Jabeen N and Ahmad R, 2011. Foliar application of potassium nitrate affects the growth and nitrate reductase activity in sunflower and safflower leaves under salinity. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 39:172–178.
Komárek J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications, European Journal of Phycology, 51(3): 346-353, DOI: 10.1080/09670262.2016.1163738
Komárek J. 2018. Several problems of the polyphasic approach in the modern cyanobacterial system. Hydrobiologia 811:7–17
Kouhgardi E, Moazami E, Vaghei RG, and Maghsoudloo, 2015. The effect of different salinities on density of Spirulina platensis under laboratory conditions. Bulletin of Environment, Pharmacology and Life Sciences, 4 (3) : 92-96.
Lee TMH, Carles MC, Hsing IM, 2003. Microfabricated PCR-electrochemical device for simultaneous DNA amplification and detection, Lab on a Chip, 3(2): 100-105
Lesmana PA, Diniarti N, dan Setyono BDH, 2019. Pengaruh penggunaan limbah air budidaya ikan lele sebagai media pertumbuhan Spirulina platensis. Jurnal perikanan 9 (1) : 50-65.
Liu H, Zhang H, Niedzwiedzki DM, Prado M, He G, Gross ML and Blankenship RE, 2013. Phycobilisomes supply excitations to both photosystems in a megacomplex in cyanobacteria. Science 342 : 1104-1107.
Liu J, Yan HF, and Ge XJ, 2016. The Use of DNA Barcoding on Recently Diverged Species in the Genus Gentiana (Gentianaceae) in China. PLOS ONE 11: 1-14
Marek RW, Bazin MJ, and Hohn P, 1987. Computer control of carbon nitrogen ratio in Spirulina platensis. Biotechnology and Bioengineering 29 : 520-528.
Markou G, Vandamme D, and Muylaert K, 2014. Microalgal and cyanobacteria cultivation : The supply of nutriens. Water Research 65: 186-202.
Nogueira SMS, Junior JS, Maia HD, Saboya JPS, and Farias WRL, 2018. Use of Spirulina platensis in treatment of fish farming wastewater. Scientific Article 49 (4): 599-606.
Papapanagiotou G & Gkelis S. 2019. Taxonomic revision of commercially used Arthrospira (Cyanobacteria) strains: a polyphasic approach, European Journal of Phycology, 54(4): 595-608. DOI: 10.1080/09670262.2019.1624832
Pirenantyo P & Limantara L, 2008. Pigmen Spirulina sebagai Senyawa Antikanker. Indonesian Journal of Cancer 4 : 155-163.
Pisal DS and Lele SS, 2005. Carotenoid from microalga, Dunaliella salina. Indian Journal of Biotechnology 4: 476-483.
Planes P, Rouanet JM, Laurent C, Baccou JC, Besançon P and Caporiccio B. 2002. Magnesium bioavailability from magnesium-fortified Spirulina in cultured human intestinal Caco-2 cells. Food Chemistry 77(2): 213-218.
Prasadi O, 2018. Pertumbuhan dan biomassa Spirulina sp. dalam media pupuk sebagai bahan fungsional. JIPK, 10 (2): 199-123.
Rahmawati SI, Hidayatulloh S, dan Suprayatmi M, 2017. Ekstraksi fikosianin dari Spirulina platensis sebagai biopigmen dan antioksidan. Jurnal Pertanian, 8 (1): 36-45.
Ragaza JA, Hossain MS, Meiler KA, Velasquez SF, Kumar V, 2020 . A review on Spirulina: alternative media for cultivation and nutritive value as an aquafeed. Reviews in Aquaculture, https://doi.org/10.1111/raq.12439
Ravelonandro PH, Ratianarivo DH, Joannis-Cassan C, Isambert A, and Raherimandimby, 2011. Improvement of the growth of Arthrospira (Spirulina) platensis from Toliara (Madagascar): Effect of agitation, salinity and CO2 addition. Food and Product Processing, 8 (9): 209-216.
Sanchez-Monedero MA, Roig A, Paredes C, and Bernal MP, 2001. Nitrogen transformation during organic waste composting by the Rutgers system and its effect on pH, EC and maturity of the composting mixtures. Bioresource technology, 78: 301-308.
Sasaqi D, Yahdi, dan Krismayanti L, 2018. Pengaruh tingkat pH, fosfat, nitrat dan ammonium terhadap pertumbuhan eceng gondok di perairan bendungan Batuhai, Kabupaten Lombok Tengah. Jurnal Tadris IPA Biologi FITK IAIN Mataram, 3 (1): 156-175 [Indonesian].
Sayadi MH, Ahmadpour N, Capoorchali MF, and Rezaei MR, 2016. Removal of nitrate and phosphate from aqueous solution by microalgae: An experimental study. Global Journal Environment Science Manage, 2(3): 357-364.
Sharma NK, and Tiwari SP, 2011. Sustainability and cyanobacteria (blue-green algae) : facts and challenges. Jurnal Appl Phycol, 23: 1059-1081.
Simeunovic J, Beslin K, Svireev Z, Lovac D, and Babic O, 2013. Impact of nitrogen and drought on phycobiliprotein content in terrestrial strain. Journal of Appl Phycol, 25: 597-607.
Soni RA, Sudhakar K, and Rana RS, 2019. Comparative study on the growth performance of Spirulina platensis on modifying culture media. Energy Reports, 5: 327-226.
Tang DYY, Khoo KS, Chew KW, Tao Y, Ho SH, Show PL. 2020. Potential utilization of bioproducts from microalgae for the quality enhancement of natural products. Bioresource Technology, 304: 122997
Tiwari AK & Tiwari BS. 2020. Cyanotherapeutics: an emerging field for future drug discovery, Applied Phycology, 1(1): 1-14
Tanner CC, Sukias JPS, and Upsdell MP, 1999. Substratum phosphorus accumaltion during maturation of gravel-bed constructed wetlands. Wat. Sci. Tech, 40 (3): 147-154.
Taufiqurrahmi N, Religia P, Mulyani G, Suryana D, Ichsan, Tanjung FA, dan Arifin Y, 2017. Phycocyanin extraction in Spirulina produced using agricultural waste. IOP Conference series: Material Science and Engineering 206 012097 doi:10.1088/1757-899X/206/1/012097
Thajuddin N and Subramanian G. 2005. Cyanobacterial biodiversity and potential applications in biotechnology. Current Science, 89(1): 47-57.
Ughy B, Nagy CI, and Kos PB, 2015. Biomedical potential of cyanobacteria and algae. Acta Biologica Szegediensis, 59 (2), 203-224.
Vernes L, Granvillain P, Chemat F, and Vian M, 2015. Phycocyanin from Arthrospira platensis. Production, Extraction anda Analysis. Current Biotechnology, 4 (4): 481-491
Vonshak A, 1997. Spirulina : Growth, physiology and biochemistry. In : Vonshak A (Ed.) Spirulina platensis (Arthrospira) Physiology, cell-biology and biotechnology (textbooks). Ben-Gurion University of the Negev. Israel. 1, 1-15.
Wang ZP, Zhao Y. 2005. Morphological reversion of Spirulina (Arthrospira) platensis (Cyanophyta): from liear to helical. Jurnal Phycol 41: 622-628
Widyantoro H, Wijayanti M, dan Dwinanti SH. 2018. Modifikasi media Spirulina platensis sebagai upaya pemanfaatan air limbah budidaya ikan lele. Jurnal Akuakultur Rawa Indonesia 6: 153-164
Wijayanti M, Jubaedah D, Gofar N, Anjastari D, 2018. Optimization of Spirulina platensis Culture Media as an Effort for Utilization of Pangasius Farming Waste Water. Sriwijaya Journal of Environment, 3(3): 108-112.
Zhang F, Man YB, Mo WY, Wong MH, 2019. Application of Spirulina in aquaculture: a review on wastewater treatment and fish growth. Reviews in Aquaculture, 12(2): 582-599
Zhao F, Zhang X, Liang C, Wu J, Bao Q, and Qin S. 2006. Genome-wide of restriction-modification system in unicellular and filamentous cyanobacteia. Physiol Genomic 24: 181-190
Zhou W, Li Y, Gao Y, and Zhao H, 2017. Nutrients removal and recovery from saline wastewater by Spirulina platensis. Bioresource Technology, 245: 10-17.