DNA barcode of Enggano hill myna, Gracula religiosa enganensis (Aves: Sturnidae) based on mitochondrial DNA cytochrome oxidase subunit I

##plugins.themes.bootstrap3.article.main##

JARULIS
CHOIRUL MUSLIM
SANTI NURUL KAMILAH
AHMAT FAKHRI UTAMA
DEBY PERMANA
MELISA MAYANG SARI
ALEX HADI PRAYITNO
IZUL MIFTAKHUL JANNAH

Abstract

Abstract. Jarulis, Muslim C, Kamilah SN, Utama AF, Permana D, Sari MM, Prayitno AH, Jannah IM. 2021. DNA barcode of Enggano hill myna, Gracula religiosa enganensis (Aves: Sturnidae) based on mitochondrial DNA cytochrome oxidase subunit I. Biodiversitas 22: 1635-1643. The sharp decline of the Enggano hill myna population due to illegal trading and habitat degradation needs to be our concern to prevent this bird from extinction. Taxonomically, Enggano hill myna is referred to as a sub-species, but this has not been confirmed by genetic data. We have sequenced seventeen Enggano hill myna mitochondrial DNA COI genes to describe their genetic identity (barcode), genetic distances, and phylogeny. DNA genome from seventeen blood samples was isolated with DNeasy® Blood and Tissue Kit Qiagen, while PCR amplification was performed using a pair primers, namely COIGRF (5'-TTCTGATTCTTTGGCCATCC-3') and COIGRR (5'-GTTGGAAGGCTTTGCGTTTA-3'). We used Clustal W alignment in MEGA 10.2.2 software to search single nucleotide polymorphisms. Genetic distance was analyzed by using the Kimura 2-parameter, and the phylogenetic tree was reconstructed with Neighbor-Joining models. We found 98.60% conservative sites, 0.69% parsimony sites, and 0.83% singleton sites from the 716 bp sequence. The highest nucleotide composition was cytosine (32.20%), and the lowest was guanine (16.80%), followed by 49% GC content. Seven SNP sites were found in 716 bp COI gene sequences of seventeen individuals. The genetic distance between Enggano hill myna individuals was ranged from 0.0-0.8%, and all Enggano hill myna individuals separated from Chinese and Indian populations in the phylogenetic tree with a genetic distance of 0.9% and 1.1%. Our data suggest that the Enggano hill myna population is still classified as a sub-species. The COI gene sequences that we found can be used to quickly identify this species and are also important to prevent illegal trading in Indonesia.

##plugins.themes.bootstrap3.article.details##

References
Anonim. 2018. Peraturan Menteri Lingkungan Hidup Dan Kehutanan Republik Indonesia Nomor P.106 Tahun 2018 Tentang Perubahan Kedua Atas Peraturan Menteri Lingkungan Hidup Dan Kehutanan Nomor P.20 Tahun 2018 Tentang Jenis Tumbuhan Dan Satwa Yang Dilindungi. Kementerian Lingkungan Hidup dan Kehutanan. Jakarta.
Arif IA, Khan HA, Shobrak M, Williams J. 2011. Cytochrome c oxidase subunit I barcoding of the green bee-eater (Merops orientalis). Genetics and Molecular Research 10:3992-3998.
Astuti D, Sulandari S. 2010. The DNA sequence performance of COI gene in White Cockatoos (Cacatua. Psittacifrmes). Treubia. 37:1-14.
Cai Y, Yue B, Jiang W, Xie S, Li J, Zhou M. 2010. DNA barcoding on subsets of three families in Aves. Mitochondrial DNA 21:132-137.
Dominic YJNg, Svejcarova T, Sadanandan KR, Ferasyi TR, Lee JGH, Prawiradilaga DM, Ouhel T, Elize YXNg, Rheindt FE. 2020. Genomic and morphological data help uncoverextinction-in-progress of an unsustainably traded hillmyna radiation. Ibis April 2020: 38-51.
Eaton JA, van Balen B, Brickle NW, Rheindt FE. 2016. Birds of the Indonesia Archipelago: Greater Sundas and Wallacea. Lynx Edition-Montseny. Barcelona.
Efe MA, Tavares ES, Baker AJ, Bonatto SL. 2009. Multigene phylogeny and DNA barcoding indicate that the Sandwich tern complex (Thalasseus sandvicensis, Laridae, Sternini) comprises two species. Molecular Phylogenetics and Evolution 52: 263-267
Gonçalves PFM, Marques ARO, Matsumoto TE, Miyaki CY. 2015. DNA barcoding identifies illegal parrot trade. Journal of Heredity 106:560-564.
Gonzales JCT, Sheldon BC, Collar NJ, Tobias JA. 2013. A comprehensive molecular phylogeny for the hornbills (Aves:Bucerotidae). Molecular Phylogenetics and Evolution 67:468-483.
Li WH, Graur D. 2000. Fundamental of molecular evolution. Second edition. Sinauer Associates Inc. Sunderland (US). 481p.
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucl Acids Symp Ser 41: 95-98.
Hajibabaei M, Smith MA, Janzen DH, Rodriguez JJ, Whitfield JB, Hebert PDN. 2006. A minimalist barcode can identify a specimen whose DNA is degraded. Molecular Ecology Notes 6: 959-964.
Harrisson C, Greensmith A. 2003. Birds of the world. Dorling Kindersley. London.
Hebert PDN, Cywinska A, Ball SL, deWaard JR. 2003a. Biological identifications through DNA barcodes. Proc. R. Soc. Lond. B 270:313-321.
Hebert PDN, Ratnasingham S, deWaar JR. 2003b. Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc R Soc Lond B 270: S96-S99.
Hebert PDN, Stoeckle MY, Zemlak TS, Francis CM. 2004. Identification of birds through DNA barcodes. PLoS Biol 2:e312.
Hebert PDN, Gregory TR. 2005. The promise of DNA barcoding for taxonomy. Syst Biol 54:852-859.
Huang Z, Tu F. 2016. DNA barcoding and phylogeny of Calidris and Tringa (Aves: Scolopacidae). Mitochondrial DNA. http://dx.doi.org/ 10.3109/ 24701394. 2016. 1155121.1-4.
Huang ZH, Li MF, Qin JW. 2016. DNA barcoding and phylogenetic relationships of Ardeidae (Aves: Ciconiiformes). Genetics and Molecular Research 15 (3): gmr. 15038270.
Jarulis, Solihin DD, Mardiastuti A, Prasetyo LB. 2018. DNA Barcode of Seven Indonesian Hornbills Species (Aves: Bucerotidae) Based on Mitochondrial DNA Cytochrome Oxidase Subunit I .HAYATI Journal of Bioscience. 25 (4): 178-187.
Johnsen A, Rindal E, Ericson PGP, Zuccon D, Kerr KCR, Stoeckle MY, Lifjeld JT. 2010. DNA barcoding of Scandinavian birds reveals divergent lineages in trans-Atlantic species. J Ornithol 151: 565-578.
Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111-120.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35:1547-1549.
Lovette IJ, Rubenstein DR. 2007. A comprehensive molecular phylogeny of the starling (Aves: Sturnidae) and mockingbirds (Aves: Mimidae): Congruent mtDNA and nuclear trees for a cosmopolitan avian radiation. Molecular Phylgenetics and Evolution 44: 1031-1056.
MacKinnon J, Philipps K, van Balen B. 2010. Burung-burung di Sumatera. Jawa. Bali dan Kalimantan (termasuk Sabah. Sarawak dan Brunei Darussalam). Puslitbang Biologi LIPI. Bogor.
Sambrook J, Fritsch EF, Maniatis T. 1989. Molecular Cloning: A Laboratory Manual. Cold Spring Harbour Laboratory Press. New York.
Sammler S, Bleidorn C, Tiedemann R. 2011. Full mitochondrial genome sequences of two endemic Philippine hornbill species (Aves: Bucerotidae) provide evidence for pervasive mitochondrial DNA recombination. BMC Genomics 12:35.
Seutin G, White BN, Boag PT. 1991. Preservation of avian blood and tissue samples for DNA analysis. Can. J. Zool. 69: 82-90.
Sibley CG, Ahlquist JE. 1990. Phylogeny and classification of birds. A study in molecular evolution. Yale University Press. New Haven & London.
Siregar J. 1997. Penentuan Jenis Kelamin dan Variasi Genotip Beo Nias (Gracula religiosa robusta). Jurusan Konservasi Sumberdaya Hutan. Fakultas Kehutanan. IPB. Skripsi. Tidak diterbitkan.
Sukmantoro W, Irham M, Novarino W, Hasudungan F, Kemp N, Muchtar M. 2007. Daftar Burung Indonesia no. 2. IdOU. Bogor.
Susanti R. 2011. Polymorphic sequence in the ND3 region of Java endemic Ploceidaebirds mitochondrial DNA. Biodiversitas12 (2): 70-75.
Susanti R, Iswari RS, Fibriana F, Indriawati. 2018. The duck cytochrome oxidase I (COI) gene: Sequence and patternsanalysis for potential barcoding tool. Biodiversitas19 (3): 997-1003.
Suzanna E. 2007. Analisis Hubungan Kekerabatan Berdasarkan Morfologi. Aktivitas Harian. Gambaran Darah Dan Karakter Dna Mitokondrion Beberapa Subspesies Burung Beo (Gracula religiosa Linnaeus 1758). Jurusan Konservasi Sumberdaya Hutan. Fakultas Kehutanan. IPB. Disertasi. Tidak diterbitkan.
Tavares ES, Alves PG, Miyaki CY, Baker AJ. 2011. DNA barcode detects high genetic structure within neotropical bird species. PLoS ONE 6: e28543.
Vilaça ST, Lacerda DR, Sari EHR, Santos FR. 2006. DNA-based identification applied to Thamnophilidae (Passeriformes) species: the first barcodes of Neotropical birds. Revista Brasileira de Ornitologia 14:7-13.
Waugh J. 2007. DNA barcoding in animal species: progress. potential and pitfalls. BioEssays.. 29. 188-197.
Yoo HS, Eah JY, Kim JS, Kim YJ, Min MS, Paek WK, Lee H, Kim CB. 2006. DNA barcoding Korean birds. Mol. Cells 22: 323-327.
Zein MSA. 2018. Barkoding DNA burung elang (Famili Accipitridae) di Indonesia. Berita Biologi 17 (2): 165-173.