Evaluation of the ambrosia beetles traps on Pterocarpus indicus in Indonesia




Abstract. Tarno H, Setiawan Y, Rahardjo BT, Wang J. 2021. Evaluation of the  ambrosia beetles traps on Pterocarpus indicus in Indonesia. Biodiversitas 22: 1332-1339. Angsana, Pterocarpus indicus Willd., is a native tree of Southeast Asia. This tree is commonly planted in large numbers as an ornamental or shade plant along the roads, in parks, and in residential areas in Malang and Batu Cities of Indonesia. Ambrosia beetles Euplatypus parallelus (F.) and Treptoplatypus micrurus (Schedl.) have been reported to attack P. indicus trees in Malang and Batu Cities. Therefore, effective traps are required for early detection and monitoring of the spread of ambrosia beetles. This research aimed to evaluate the effectiveness of different traps and to investigate the diversity of ambrosia beetles on P. indicus trees in Malang and Batu Cities. This research was conducted along the roads in Malang and Batu Cities using four types of traps: funnel trap, window flight trap, bottle trap, and yellow sticky trap. Eleven ambrosia beetle species were collected in this research. The most abundant species were E. parallelus and Cryphalus laticollis (Browne). The funnel trap was the most effective for capturing ambrosia beetles, whereas the bottle trap was the least effective trap. The funnel trap captured more E. parallelus and C. laticollis individuals than other traps. The ambrosia beetles captured using different traps were categorized as having low diversity. The ambrosia beetles collected from Malang and Batu Cities were categorized as having moderate diversity.


Abbasi QD, Jan N, Mahar AN. 2008. Monitoring of Ambrosia Bark Beetle Through Installation of Sticky Color Traps at Different Heights in Mango Trees. International Journal of Fruit, 7(3), 37–41. https://doi.org/doi: 10.1300/J492v07n03
Bouget C. 2008. Sampling saproxylic beetles with window flight traps?: Methodological insights. Rev. Écol. (Terre Vie), 10.
Bumrungsri S, Beaver R, Phongpaichit S, Sittichaya, W. 2008. The infestation by an exotic ambrosia beetle, Euplatypus parallelus (F.) (Coleoptera: Curculionidae: Platypodinae) of Angsana trees (Pterocarpus indicus Willd.) in southern Thailand. Songklanakarin Journal of Science and Technology, 30(5), 579–582.
Burbano EG, Wright MG, Gillette NE, Mori S, Dudley N, Jones T, Kaufmann M. 2012. Efficacy of Traps, Lures, and Repellents for Xylosandrus compactus (Coleoptera: Curculionidae) and Other Ambrosia Beetles on Coffea arabica Plantations and Acacia koa Nurseries in Hawaii. Environmental Entomology, 41(1), 133–140. https://doi.org/10.1603/EN11112
Castrillo LA, Griggs MH, Vandenberg, JD. 2012. Brood Production by Xylosandrus germanus (Coleoptera: Curculionidae) and Growth of Its Fungal Symbiont on Artificial Diet Based on Sawdust of Different Tree Species. Environmental Entomology, 41(4), 822–827. https://doi.org/10.1603/en11251
Flechtmann CAH, Ottati ALT, Berisford, CW. 2009. Comparison of Four Trap Types for Ambrosia Beetles (Coleoptera, Scolytidae) in Brazilian Eucalyptus Stands. Journal of Economic Entomology, 93(6), 1701–1707. https://doi.org/10.1603/0022-0493-93.6.1701
Gandhi KJK, Cognato AI, Lightle DM, Mosley BJ, Nielsen DG, Herms D. 2010. Species composition, seasonal activity, and semiochemical response of native and exotic bark and ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) in northeastern Ohio. Journal of Economic Entomology, 103(4), 1187–1195. https://doi.org/10.1603/EC10026
Grove SJ. 2000. Trunk window trapping: An effective technique for sampling tropical saproxylic beetles. Memoirs of the Queensland Museum, 46(1), 149–160.
Hanula JL, Ulyshe MD, Horn S. 2011. Effect of trap type, trap position, time of year, and beetle density on captures of the redbay ambrosia beetle (Coleoptera: Curculionidae: Scolytinae). Journal of Economic Entomology, 104, 501–508. https://doi.org/10.1603/EC10263
Hulc J, Smith S. 2010. Xyleborini ambrosia beetles: an identification tool to the world genera. (http://itp. lucidcentral.org/id/wbb/xyleborini/index.htm) (accessed December 2018).
Hulcr J, Beaver RA, Puranasakul W, Dole SA, Sonthichai S. 2008. A Comparison of Bark and Ambrosia Beetle Communities in Two Forest Types in Northern Thailand (Coleoptera: Curculionidae: Scolytinae and Platypodinae). Environmental Entomology, 37(6), 1461–1470. https://doi.org/10.1603/0046-225X-37.6.1461
Hulcr J, Beaver RA, Purnasakul W, Dole SA, Sonthichai S. 2009. A Comparison of Bark and Ambrosia Beetle Communities in Two Forest Types in Northern Thailand (Coleoptera: Curculionidae?: Scolytinae and Platypodinae ). Environ. Entomol, 37(6). https://doi.org/10.1603/0046-225X-37.6.1461
Kim J, Lee J, Park I, Choi WI. 2010. Influence of trap type and location on tree trunk on Platypus koryoensis (Coleoptera: Platypodidae) trapping. Korean Journal of Applied Entomology, 49(2), 145–149. https://doi.org/10.5656/KSAE.2010.49.2.145
Krebs CJ. 1999. Ecological Methodology. Annals of Surgery, 620. https://doi.org/10.1007/s007690000247
Kühnholz S, Borden JH, Uzunovic A. 2001. Secondary ambrosia beetles in apparently healthy trees: adaptations, potential causes and suggested research. Integrated Pest Management Reviews, 6, 193–194. https://doi.org/10.1023/A
Masuya H, Endoh R, Ando Y, Tabata M. 2019. Fungi associated with Cryphalus rhusi (Scolytinae; Coleoptera) infesting lacquer tree, Toxicodendron vernicifluum. Journal of Forest Research, 00(00), 1–5. https://doi.org/10.1080/13416979.2018.1564532
Mercy A, Hamzah B, Rahim D. 2018. An analysis of the adequacy of green lane vegetation in absorbing The carbon monoxide (CO) of transportation activities. International Journal of Engineering Science Invention (IJESI), 7(5), 59–64. Retrieved from http://www.ijesi.org/papers/Vol(7)i5/Version-4/H0705045964.pdf
Miller ADR, Crowe CM, Ginzel MD, Ranger CM, Schultz PB. 2018. Comparison of Baited Bottle and Multiple- Funnel Traps for Ambrosia Beetles ( Coleoptera?: Curculionidae?: Scolytinae ) in Eastern United States 1. Entomological Science, 3(53).
Miller DR, Crowe CM. 2009. Length of Multiple-Funnel Traps Affects Catches of Some Bark and Wood Boring Beetles in a Slash Pine Stand in Northern Florida. Florida Entomologist, 92(3), 506. https://doi.org/10.1653/024.092.0315
Miller DR, Crowe CM. 2011. Relative Performance of Lindgren Multiple-Funnel, Intercept Panel, and Colossus Pipe Traps in Catching Cerambycidae and Associated Species in the Southeastern United States. Forest Entomology, 104(6).
Oksanen J. 2015. Vegan?: ecological diversity, 1(2), 1–12. https://doi.org/10.1029/2006JF000545
Peer K, Taborsky M. 2007. Delayed dispersal as a potential route to cooperative breeding in ambrosia beetles. Behavioral Ecology and Sociobiology, 61(5), 729–739. https://doi.org/10.1007/s00265-006-0303-0
R Core Development Team. 2019. R: A Language and Environment for Statistical Computing (Vol. 2). https://doi.org/10.1007/978-3-540-74686-7
Rabaglia RJ, Dole SA, Cognato AI. 2006. Review of American Xyleborina (Coleoptera: Curculionidae: Scolytinae) Occurring North of Mexico, with an Illustrated Key. Annals of the Entomological Society of America, 99(6), 1034–1056. https://doi.org/10.1603/0013-8746(2006)99[1034:roaxcc]2.0.co;2
Reed SE, Muzika RM. 2010. The Influence of Forest Stand and Site Characteristics on the Composition of Exotic Dominated Ambrosia Beetle Communities (Coleoptera: Curculionidae: Scolytinae). Environmental Entomology, 39(McLean 1985), 1482–1491. https://doi.org/10.1603/en09374
Sanderson FR, King FY, Anuar S. 1997. A fusarium wilt (Fusarium oxysporum) of angsana (pterocarpus indicus) in singapore: II. Natural Resistance of Angsana (P. indicus) to F. oxysporum. Arboricultural Journal, 21(3), 205–214. https://doi.org/10.1080/03071375.1997.9747166
Setiawan Y, Rachmawati R, Tarno H. 2018. Diversity of ambrosia beetles (Coleoptera: Scolytidae) on teak forest in Malang District, East Java, Indonesia. Biodiversitas Journal of Biological Diversity (Vol. 19). https://doi.org/10.13057/biodiv/d190528
Sittichaya W, Kawin. 2018. Effect of Two Trap Types on Diversity’s and Population’s Studies of Ambrosia Beetles Tribe Xyleborini ( Col ., Curculionidae , Scolytinae ). Songklanakarin Journal of Plant Science, 5(1), 62–69.
Steininger MS, Hulcr J, Šigut M, Lucky A. 2015. Simple and Efficient Trap for Bark and Ambrosia Beetles (Coleoptera: Curculionidae) to Facilitate Invasive Species Monitoring and Citizen Involvement. Journal of Economic Entomology, 108(3), 1115–1123. https://doi.org/10.1093/jee/tov014
Strom ABL, Goyer RA. 2001. Effect of Silhouette Color on Trap Catches of Dendroctonus frontalis (Coleoptera?: Scolytidae ) Effect of Silhouette Color on Trap Catches of Dendroctonus frontalis ( Coleoptera?: Scolytidae ). Annals of the Entomological Society of America, 94(6), 948–953.
Tarno H, Septia ED, Aini LQ. 2016. Microbial Community Associated With Ambrosia Beetle , Euplatypus parallelus On Sonokembang, Pterocarpus indicus in Malang. AGRIVITA Journal of Agricultural Science, 38(81), 312–320.
Tarno H, Suprapt H, Himawan T. 2014. First record of ambrosia beetle (Euplatypus paralellus fabricius) infestation on sonokembang (Pterocarpus indicus willd.) from Malang Indonesia. Agrivita, 36(2), 189–200. https://doi.org/10.17503/Agrivita-2014-36-2-p189-200
Tarno H, Suprapto H, Himawan T. 2015. New record of the ambrosia beetle, treptoplatypus micrurus schedl. Attack on sonokembang (Pterocarpus indicus Willd.) in Batu, Indonesia. Agrivita, 37(3), 220–225. https://doi.org/10.17503/Agrivita-2015-37-3-p220-225
Werle CT, Bray AM, Oliver JB, Blythe EK, Sampson BJ. 2014. Ambrosia Beetle (Coleoptera?: Curculionidae?: Scolytinae) Captures Using Colored Traps in Southeast Tennessee and South Mississippi. J. Entomol. Sci., 49(4).
Wood SL. 2007. Bark and Ambrosia Beetles. Forest Entomology. Provo, Utah USA: Print and Mail Production Center. https://doi.org/10.1002/9781444397895.ch9