Novel chitinolytic bacteria from the shrimp shell processing waste
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. Masri M, Sukmawaty E, Aditia L. 2021. Novel chitinolytic bacteria from the shrimp shell processing waste. Biodiversitas 22: 2672-2681. Chitinase is an enzyme that hydrolyzes chitin (?-1,4 Nsetyl-D-glucosamine polymer). Several types of microorganisms produce chitinase that contributes to basic science and application. The role of chitinase enzyme is widely utilized in various fields, such as health as an anti-tumor agent and agriculture as biological control agents in plant disease caused by fungus. The purpose of this study was to isolate novel chitinolytic bacteria from shrimp shell waste in Makassar, Indonesia, using the scatter plate method on chitin agar selective media incubated at 37°C for 3 days. The clear zone formation around the colony was marked as an indicator of chitinase activity performed by the certain isolate. Selection was carried out by recycling all isolates on chitin agar media, which were incubated at 37°C for 3 days and measured the chitinolytic index. Two of ten isolates produced the highest chitinolytic index, namely, KLA-2 (45) and KLA-4 (15) isolates. The molecular identification results showed that the KLA-2 and KLA-4 isolates were Lysinibacillus fusiformis strain WH22 and Brevibacillus reuszeri strain CMB-15, respectively. Therefore, novel chitinolytic bacteria that can produce chitinase enzyme from shrimp shell waste are L. fusiformis and B. reuszeri
##plugins.themes.bootstrap3.article.details##
Ahmed I, Yokota A, Yamazoe A, Fujiwara T. 2007. Proposal of Lysinibacillus boronitolerans gen. nov. sp. nov., and transfer of Bacillus fusiformis to Lysinibacillus fusiformis comb. nov. and Bacillus sphaericus to Lysinibacillus sphaericus comb. nov. Int J Syst Evol Microbiol. 57(5):1117–1125. doi:10.1099/ijs.0.63867-0.
Amit Roy SR. 2014. Molecular Markers in Phylogenetic Studies-A Review. J Phylogenetics Evol Biol. 02(02). doi:10.4172/2329-9002.1000131.
Benhabiles MS, Salah R, Lounici H, Drouiche N, Goosen MFA, Mameri N. 2012. Antibacterial activity of chitin, chitosan and its oligomers prepared from shrimp shell waste. Food Hydrocoll. 29(1):48–56. doi:10.1016/j.foodhyd.2012.02.013. http://dx.doi.org/10.1016/j.foodhyd.2012.02.013.
Chang WT, Chen ML, Wang SL. 2010. An antifungal chitinase produced by Bacillus subtilis using chitin waste as a carbon source. World J Microbiol Biotechnol. 26(5):945–950. doi:10.1007/s11274-009-0244-7.
Delpin MW, Goodman AE. 2009. Nitrogen regulates chitinase gene expression in a marine bacterium. ISME J. 3(9):1064–1069. doi:10.1038/ismej.2009.49.
Drewnowska JM, Fiodor A, Barboza-Corona JE, Swiecicka I. 2020. Chitinolytic activity of phylogenetically diverse Bacillus cereus sensu lato from natural environments. Syst Appl Microbiol. 43(3):126075. doi:10.1016/j.syapm.2020.126075. https://doi.org/10.1016/j.syapm.2020.126075.
Elieh-Ali-Komi D, Hamblin MR. 2016. Chitin and Chitosan: Production and Application of Versatile Biomedical Nanomaterials. Int J Adv Res. 4(3):411–427. [accessed 2021 Jan 27]. http://www.ncbi.nlm.nih.gov/pubmed/27819009.
Halder SK, Maity C, Jana A, Das A, Paul T, Das Mohapatra PK, Pati BR, Mondal KC. 2013. Proficient biodegradation of shrimp shell waste by Aeromonas hydrophila SBK1 for the concomitant production of antifungal chitinase and antioxidant chitosaccharides. Int Biodeterior Biodegrad. 79:88–97. doi:10.1016/j.ibiod.2013.01.011. http://dx.doi.org/10.1016/j.ibiod.2013.01.011.
Haliza W. 2016. Karakteristik Kitinase Dari Mikrobia. Bul Teknol Pasca Panen. 8(1):1–14.
He M, Li X, Liu H, Miller SJ, Wang G, Rensing C. 2011. Characterization and genomic analysis of a highly chromate resistant and reducing bacterial strain Lysinibacillus fusiformis ZC1. J Hazard Mater. 185(2–3):682–688. doi:10.1016/j.jhazmat.2010.09.072.
Horiike T. 2016. an Introduction To Molecular Phylogenetic Analysis. Rev Agric Sci. 4(0):36–45. doi:10.7831/ras.4.36.
Hsu SC, Lockwood JL. 1975. Powdered Chitin Agar as a Selective Medium for Enumeration of Actinomycetes in Water and Soil1. Appl Microbiol. 29(3):422–426. doi:10.1128/am.29.3.422-426.1975.
Kim YH, Park SK, Hur JY, Kim YC. 2017. Purification and characterization of a major extracellular chitinase from a biocontrol bacterium, Paenibacillus elgii HOA73. Plant Pathol J. 33(3):318–328. doi:10.5423/PPJ.FT.01.2017.0022.
Kobayashi S, Kiyosada T, Shoda SI. 1997. A novel method for synthesis of chitobiose via enzymatic glycosylation using a sugar oxazoline as glycosyl donor. Tetrahedron Lett. 38(12):2111–2112. doi:10.1016/S0040-4039(97)00319-5.
Kobayashi T, Nakagawa N, Imada C, Hamada-Sato N, Watanabe E. 2004. Occurrence of a metalloprotease (thermolysin) inhibitor among Brevibacillus species and purification of such inhibitor from Brevibacillus reuszeri IFO 15719T. Fish Sci. 70(2):299–305. doi:10.1111/j.1444-2906.2003.00804.x.
Lay B. 1994. Analisis mikroba di laboratorium. 1st ed. Jakarta: PT Raja Grafindo Persada.
Le B, Yang SH. 2019. Microbial chitinases: properties, current state and biotechnological applications. World J Microbiol Biotechnol. 35(9):1–12. doi:10.1007/s11274-019-2721-y. https://doi.org/10.1007/s11274-019-2721-y.
Li Y, Lei X, Zhu H, Zhang H, Guan C, Chen Z, Zheng W, Fu L, Zheng T. 2016. Chitinase producing bacteria with direct algicidal activity on marine diatoms. Sci Rep. 6(February):1–13. doi:10.1038/srep21984.
Li ZX, Yang BR, Jin JX, Pu YC, Ding C. 2014. The operating performance of a biotrickling filter with Lysinibacillus fusiformis for the removal of high-loading gaseous chlorobenzene. Biotechnol Lett. 36(10):1971–1979. doi:10.1007/s10529-014-1559-5.
Monge EC, Tuveng TR, Vaaje-Kolstad G, Eijsink VGH, Gardner JG. 2018. Systems analysis of the glycoside hydrolase family 18 enzymes from Cellvibrio japonicus characterizes essential chitin degradation functions. J Biol Chem. 293(10):3849–3859. doi:10.1074/jbc.RA117.000849. http://dx.doi.org/10.1074/jbc.RA117.000849.
Najafi MF, Deobagkar Dileep, Deobagkar Deepti. 2005. Purification and characterization of an extracellular ?-amylase from Bacillus subtilis AX20. Protein Expr Purif. 41(2):349–354. doi:10.1016/j.pep.2005.02.015.
Nandanwar HS, Vohra RM, Hoondal GS. 2013. Trimeric l-N-carbamoylase from newly isolated Brevibacillus reuszeri HSN1: A potential biocatalyst for production of l -?-amino acids. Biotechnol Appl Biochem. 60(2):219–230. doi:10.1002/bab.1066.
Nei M KS. 2000. Molecular evolution and phylogenetics. Oxford: Oxford University Press.
Prasanna L, Eijsink VGH, Meadow R, Gåseidnes S. 2013. A novel strain of Brevibacillus laterosporus produces chitinases that contribute to its biocontrol potential. Appl Microbiol Biotechnol. 97(4):1601–1611. doi:10.1007/s00253-012-4019-y.
Shamshina JL. 2019. Chitin in ionic liquids: Historical insights into the polymer’s dissolution and isolation. A review. Green Chem. 21(15):3974–3993. doi:10.1039/c9gc01830a.
Shida O, Takagi H, Kadowaki K, Udaka S, Nakamura LK, Komagata K. 1995. Proposal of bacillus reuszeri sp. nov., Bacillus formosus sp. nov., nom. rev., and Bacillus borstelensis sp. nov., nom. rev. Int J Syst Bacteriol. 45(1):93–100. doi:10.1099/00207713-45-1-93. [accessed 2021 Feb 11]. https://www.microbiologyresearch.org/content/journal/ijsem/10.1099/00207713-45-1-93.
Shida Osamu, Hiroaki Takagi, Kiyoshi Kadowaki KK. 1996. Proposal for Two New Genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol. 46(4):939–946.
Šim?nek J, Tishchenko G, Rozhetsky K, Barto?ová H, Kope?ný J, Hodrová B. 2004. Chitinolytic enzymes from Clostridium aminovalericum: Activity screening and purification. Folia Microbiol (Praha). 49(2):194–198. doi:10.1007/BF02931401.
Singh R, Upadhyay SK, Singh M, Sharma I, Sharma P, Kamboj P, Saini A, Voraha R, Sharma AK, Upadhyay TK, et al. 2020. Chitin, chitinases and chitin derivatives in biopharmaceutical, agricultural and environmental perspective. Biointerface Res Appl Chem. 11(3):9985–10005. doi:10.33263/BRIAC113.998510005.
Singh RJ, Kumar DP and SM. 2013. Multifarious plant growth promoting characteristics of chickpea rhizosphere associated Bacilli help to suppress soil-borne pathogens. Plant Growth Regul , Springer. 73(1):91–101.
Singh RK, Kumar DP, Solanki MK, Singh P, Srivastva AK, Kumar S, Kashyap PL, Saxena AK, Singhal PK, Arora DK. 2013. Optimization of media components for chitinase production by chickpea rhizosphere associated Lysinibacillus fusiformis B-CM18. J Basic Microbiol. 53(5):451–460. doi:10.1002/jobm.201100590.
Soeka YS, Sulistiani S. 2012. Seleksi, Karakterisasi, dan Identifikasi Bakteri Penghasil Kitinase yang Diisolasi dari Gunung Bromo Jawa Timur. J Natur Indones. 13(2):155. doi:10.31258/jnat.13.2.155-161.
Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. 2013. MEGA6: Molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 30(12):2725–2729. doi:10.1093/molbev/mst197.
Tran TN, Doan CT, Nguyen VB, Nguyen AD, Wang SL. 2019. The isolation of chitinase from Streptomyces thermocarboxydus and its application in the preparation of chitin oligomers. Res Chem Intermed. 45(2):727–742. doi:10.1007/s11164-018-3639-y. https://doi.org/10.1007/s11164-018-3639-y.
Tremblay J, Singh K, Fern A, Kirton ES, He S, Woyke T, Lee J, Chen F, Dangl JL, Tringe SG. 2015. Primer and platform effects on 16S rRNA tag sequencing. Front Microbiol. 6(AUG):1–15. doi:10.3389/fmicb.2015.00771.
Tronsmo A, Harman GE. 1993. Detection and quantification of N-acetyl-?-D-glucosaminidase, chitobiosidase, and endochitinase in solutions and on gels. Anal Biochem. 208(1):74–79. doi:10.1006/abio.1993.1010.
Tsujibo H, Kondo N, Tanaka K, Miyamoto K, Baba N, Inamori Y. 1999. Molecular analysis of the gene encoding a novel transglycosylative enzyme from Alteromonas sp. strain O-7 and its physiological role in the chitinolytic system. J Bacteriol. 181(17):5461–5466. doi:10.1128/jb.181.17.5461-5466.1999. [accessed 2021 Feb 7]. http://jb.asm.org/.
Verma P, Yadav AN, Khannam KS, Kumar S, Saxena AK, Suman A. 2016. Molecular diversity and multifarious plant growth promoting attributes of Bacilli associated with wheat (Triticum aestivum L.) rhizosphere from six diverse agro-ecological zones of India. J Basic Microbiol. 56(1):44–58. doi:10.1002/jobm.201500459.
Wang K, Yan P sheng, Ding Q long, Wu Q xi, Wang Z bo, Peng J. 2013. Diversity of culturable root-associated/endophytic bacteria and their chitinolytic and aflatoxin inhibition activity of peanut plant in China. World J Microbiol Biotechnol. 29(1):1–10. doi:10.1007/s11274-012-1135-x.
Widhyastuti N. 2007. Produksi Kitinase Ekstraseluler Aspergilus rugulosus 501 Secara Optimal pada Media Cair. Ber Biol. 8(6):547–553.
Yang X, Yousef AE. 2018. Antimicrobial peptides produced by Brevibacillus spp.: structure, classification and bioactivity: a mini review. World J Microbiol Biotechnol. 34(4):0. doi:10.1007/s11274-018-2437-4. http://dx.doi.org/10.1007/s11274-018-2437-4.
Yavari-Bafghi M, Babavalian H, Amoozegar MA. 2019. Isolation, screening and identification of haloarchaea with chitinolytic activity from hypersaline lakes of Iran. Arch Biol Sci. 71(1):71–81. doi:10.2298/ABS180525049Y.
Yildirim E, Karlidag H, Turan M, Dursun A, Goktepe F. 2011. Promoition of Broccoli by Plant Growth Promoting Rhizobacteria. Hort Sci. 46(6):932–936. http://hortsci.ashspublications.org/content/46/6/932%5Cnfiles/1147/Yildirim et al. - 2011 - Growth, Nutrient Uptake, and Yield Promotion of Br.pdf%5Cnfiles/1498/932.html.
Yong D, Ee R, Lim YL, Chang CY, Yin WF, Chan KG. 2015. Insights on quorum-quenching properties of Lysinibacillus fusiformis strain RB21, a Malaysian municipal solid-waste landfill soil isolate, via complete genome sequence analysis. Genome Announc. 3(3):2014–2015. doi:10.1128/genomeA.00409-15.
Yurnaliza Y, Margino S, Sembiring L. 2012. Kemampuan Kitinase Streptomyces RKt5 sebagai Antijamur terhadap Patogen Fusarium oxysporum. J Natur Indones. 14(1):42. doi:10.31258/jnat.14.1.42-46.
Zhao L, Bao G, Geng B, Song J, Li Y. 2016. Draft genome sequence of Lysinibacillus fusiformis strain SW-B9, a novel strain for biotransformation of isoeugenol to vanillin. Genome Announc. 3(2):9–10. doi:10.1128/genomeA.00289-15.
Zhao Z, Baltar F, Herndl GJ. 2020. Linking extracellular enzymes to phylogeny indicates a predominantly particle-associated lifestyle of deep-sea prokaryotes. Sci Adv. 6(16):1–11. doi:10.1126/sciadv.aaz4354.