Bioaccumulation and phytoremediation of some heavy metals (Mn, Cu, Zn and Pb) by bladderwort and duckweed

##plugins.themes.bootstrap3.article.main##

NAYYEF M. AZEEZ

Abstract

Abstract. Azeez NM. 2021. Bioaccumulation and phytoremediation of some heavy metals (Mn, Cu, Zn and Pb) by bladderwort and duckweed. Biodiversitas 22: 3093-3098. This paper discussed the changes in some heavy metals (Mn, Cu, Zn, and Pb) in Utricularia vulgaris L. (Bladderwort) and Lemna minor L. (Duckweed) in the sewage treatment unit at the University of Basrah Campus, Iraq. For all examined heavy metals, the better accumulator was U. vulgaris than L. minor. This study proved that both plants significantly reduced the concentrations of heavy metals in wastewater. The efficiency of removing heavy metals was more than 68%. For both species, the bioconcentration factor (BCF) values of the tested metals were <1, and the BCFvalues decreased in the following order in both species: Pb>Mn>Cu>Zn. Reduction rates of pH, TSS, TDS, and conductivity were significant at the end of the experiment. The results showed that the tested macrophytes exhibit a good characteristic as bioaccumulators and could be effectively used in phytoremediation techniques.

##plugins.themes.bootstrap3.article.details##

References
Al-Abbawy, D. A., Al-Thahaibawi, B. M. H., Al-Mayaly, I. K. A., & Younis, K. H. (2021). Assessment of some heavy metals in various aquatic plants of Al-Hawizeh Marsh, southern of Iraq. Biodiversitas Journal of Biological Diversity, 22(1), Article 1. https://doi.org/10.13057/biodiv/d220141

Ali, S., Abbas, Z., Rizwan, M., Zaheer, I. E., Yava?, ?., Ünay, A., Abdel-DAIM, M. M., Bin-Jumah, M., Hasanuzzaman, M., & Kalderis, D. (2020). Application of Floating Aquatic Plants in Phytoremediation of Heavy Metals Polluted Water: A Review. Sustainability, 12(5), 1927. https://doi.org/10.3390/su12051927

Ashfaque, F., Inam, A., Sahay, S., & Iqbal, S. (2016). Influence of heavy metal toxicity on plant growth, metabolism and its alleviation by phytoremediation-a promising technology. Journal of Agriculture and Ecology Research International, 1-19.?

Nayyef M, Azeez A & Sabbar A. 2012. Efficeincy of Lemna minor L. in the Phytoremediation of wastewater pollutants from Basrah oil refinery. Journal of Applied Biotechnology in Environmental Sanitation 1(4): 163-172.
Babovi?, N., Drazi?, G., Djordjevi?, A. & Mihailovi? N. (2010). Heavy and toxic metal accumulation in six macrophyte species from fish pond Ecka, Republic of Serbita. BALWOIS - Ohrid, Republic of Macedonia, (25–29 May 2010) (pp. 1–6). Republic of Serbita.
Daud, M. K., Ali, S., Abbas, Z., Zaheer, I. E., Riaz, M. A., Malik, A., Hussain, A., Rizwan, M., Zia-ur-Rehman, M., & Zhu, S. J. (2018). Potential of Duckweed (Lemna minor) for the Phytoremediation of Landfill Leachate [Research Article]. Journal of Chemistry. https://doi.org/10.1155/2018/3951540
Emenike, P., Tenebe, I., Omole, D., Ndambuki, J., Ogbiye, A. & Sojobi, A., (2015). Application of water recovery option for agricultural use in developing countries: Case study of a Nigerian community. Conference on International Research on Food Security, Natural Resource Management and Rural Development, Humboldt University of Berlin and the Leibniz Centre for Agricultural Landscape Research (ZALF).

Iqbal, J., & Baig, M. (2016). Effect of Nutrient Concentration and pH on Growth and Nutrient Removal Efficiency of Duckweed (Lemna Minor) From Natural Solid Waste Leachate. 1, 1–7.

Jaishankar, M., Tseten, T., Anbalagan, N., Mathew, B. B., & Beeregowda, K. N. (2014). Toxicity, mechanism and health effects of some heavy metals. Interdisciplinary Toxicology, 7(2), 60–72. https://doi.org/10.2478/intox-2014-0009

Koleli, N., Demir, A., Kantar, C., Atag, G. A., Kusvuran, K., & Binzet, R. (2015). Heavy Metal Accumulation in Serpentine Flora of Mersin-Findikpinari (Turkey) – Role of Ethylenediamine Tetraacetic Acid in Facilitating Extraction of Nickel. Soil Remediation and Plants, 629–659. doi:10.1016/b978-0-12-799937-1.00022-x

Leblebici, Z., & Aksoy, A. (2011). Growth and Lead Accumulation Capacity of Lemna minor and Spirodela polyrhiza (Lemnaceae): Interactions with Nutrient Enrichment. Water, Air, and Soil Pollution, 214(1), 175–184. https://doi.org/10.1007/s11270-010-0413-1

Maksimovi?, T., Loli?, S., & Kukavica, B. (2020). Seasonal Changes in the Content of Photosynthetic Pigments of Dominant Macrophytes in the Barda?a Fishpond Area. Ekológia (Bratislava), 39(3), 201–213. https://doi.org/10.2478/eko-2020-0015

Mkumbo, S., Mwegoha, W., & Renman, G. (2012). Assessment of the phytoremediation potential for Pb, Zn and Cu of indigenous plants growing in a gold mining area in Tanzania. International Journal of Ecology and Environmental Sciences, 2(4), 2425-2434.

Moogouei, R., Borghei, M., Hosseini, S., & Tajadod, G. (2017). Potential of plant species for phytoremediation of metformin from solutions. International Journal of Environmental Science and Technology, 15(3), 593–598. doi:10.1007/s13762-017-1538-1

Murat, Y., Yozukmaz, A. and Sel. F. Heavy metal accumulation in the leaves, stem and root of the invasive submerged macrophyte Myriophyllum spicatum L. (Haloragaceae): an example of Kadin creek (Mugla, Turkey). Brazilian Archives of Biology and Technology 57 (3): 434-440. 2014.

Nouri, M., & Haddioui, A. E. M. (2016). Assessment of metals contamination and ecological risk in ait Ammar abandoned iron mine soil, Morocco. Ekológia (Bratislava), 35(1), 32–49. https://doi.org/10.1515/eko-2016-0003

Pant, P. P., & Tripathi, A. K. (2014). Impact Of Heavy Metals On Morphological And Biochemical Parameters Of Shorea Robusta Plant. Ekológia (Bratislava), 33(2), 116–126. https://doi.org/10.2478/eko-2014-0012

Paunov, M., Koleva, L., Vassilev, A., Vangronsveld, J., & Goltsev, V. (2018). Effects of Different Metals on Photosynthesis: Cadmium and Zinc Affect Chlorophyll Fluorescence in Durum Wheat. International Journal of Molecular Sciences, 19(3). https://doi.org/10.3390/ijms19030787

Polecho?ska, L., Klink, A., & Dambiec, M. (2019). Trace element accumulation in Salvinia natans from areas of various land use types. Environmental Science and Pollution Research International, 26(29), 30242–30251. https://doi.org/10.1007/s11356-019-06189-5

Prieto MJ, Acevedo SOA, Prieto GF, et al. Phytoremediation of soils contaminated with heavy metals. Biodiversity Int J. 2018;2(4):362-376. DOI: 10.15406/bij.2018.02.00088

Rai, P. K. (2009). Heavy Metal Phytoremediation from Aquatic Ecosystems with Special Reference to Macrophytes. Critical Reviews in Environmental Science and Technology, 39(9), 697–753. https://doi.org/10.1080/10643380801910058

Safa Yaseen Taha, Asia Fadhile Almansoory , & Israa Abdulwahab Al-Baldawi. (2019). Two-stage hybrid constructed wetlands system for industrial wastewater treatment. Marsh Bulletin, 14(2), 102–116.

Sarma, R. S., & Prakash, P. (2020). Adverse effect of heavy metal toxicity in plants’ metabolic systems and biotechnological approaches for its tolerance mechanism. In New Frontiers in Stress Management for Durable Agriculture (pp. 145-168). Springer, Singapore.?

Tangahu, B. V., Sheikh Abdullah, S. R., Basri, H., Idris, M., Anuar, N., & Mukhlisin, M. (2011). A review on heavy metals (As, Pb, and Hg) uptake by plants through phytoremediation. International Journal of Chemical Engineering, 2011.



Tchounwou, P. B., Yedjou, C. G., Patlolla, A. K., & Sutton, D. J. (2012). Heavy Metals Toxicity and the Environment. EXS, 101, 133–164. https://doi.org/10.1007/978-3-7643-8340-4_6


Varma, S. (2021). Heavy metals stress and defense strategies in plants: An overview. Journal of Pharmacognosy and Phytochemistry, 10(1), 608-614.?