Composition, structure, and physicochemical characteristics of pigeon pea (Cajanus cajan) starches from Indonesia
##plugins.themes.bootstrap3.article.main##
Abstract
Abstract. A’yuni NRL, Marsono Y, Marseno DW, Triwitoyo P. 2021. Composition, structure, and physicochemical characteristics of pigeon pea (Cajanus cajan) starches from Indonesia. Biodiversitas 22: 3430-3439. Information on the characteristics of pigeon pea (Cajanus cajan (L.) Millsp.) starch would provide a scientific basis for developing its application. However, data about characteristics of pigeon pea starch, especially from the Southeast Asia region, has been limited. This study determined the composition, structure, and physicochemical characteristics of pigeon pea starches from three different Indonesian regions, i.e., Bali, Yogyakarta, and West Nusa Tenggara (NTB). We also investigated the potential application of Indonesian pigeon pea starches. Pigeon pea starch was extracted using a wet method, and then pigeon pea starch was characterized. The yield of pigeon pea starches ranged from 29.83-31.68%. Pigeon pea starches showed a significant difference (P<0.05) in amylose content (54.74-58.51%), relative crystallinity (24.20-28.97%), water-binding capacity (0.70-0.76 g/g), oil binding capacity (0.55-0.58 g/g), swelling power (13.19-14.52 g/g), and solubility (9.48-11.15%). The pasting properties (except for final viscosity) and thermal properties (except for onset temperature and gelatinization enthalpy) differed significantly. Granules of pigeon pea starch were oval to elliptical, with a mean granule diameter of 18.41-19.98 µm. According to X-ray diffraction patterns, pigeon pea starches showed CA type, contained orthorhombic and hexagonal crystals. Pigeon pea starches also showed the same FTIR spectra. The results revealed that the differences in pigeon pea growing locations affect pigeon pea starch's composition and physicochemical properties. The highest amylose content and lowest relative crystallinity were found in Yogyakarta pigeon pea starch. In the future, our findings could be used to develop pigeon pea starch for various food applications.
##plugins.themes.bootstrap3.article.details##
Agunbiade SO, Longe OG. 1999. The physico-functional characteristics of starches from cowpea (Vigna unguiculata), pigeon pea (Cajanus cajan) and yambean (Sphenostylis stenocarpa). Food Chem 65(4): 469-474. DOI:10.1016/S0308-8146(98)00200-3.
Alcázar-Alay SC, Meireles MAA. 2015. Physicochemical properties, modifications and applications of starches from different botanical sources. Food Sci Technol 35(2): 215-236. DOI:10.1590/1678-457X.6749.
Amarteifio JO, Munthali DC, Karikari SK, Morake TK. 2002. The composition of pigeon peas (Cajanus cajan (L.) Millsp.) grown in Botswana. Plant Foods Hum Nutr 57(2): 173-177. DOI:10.1023/A:1015248326920.
AOAC. 1995. Official Methods of Analysis of AOAC International. 16th. AOAC International, Washington.
Beckles DM, Thitisaksakul M. 2014. How environmental stress affects starch composition and functionality in cereal endosperm. Starch /Stärke 66(1-2): 58-71. DOI:10.1002/star.201300212.
Bhat FM, Riar CS. 2016. Effect of amylose, particle size & morphology on the functionality of starches of traditional rice cultivars. Int J Biol Macromol 92: 637-644. DOI:10.1016/j.ijbiomac.2016.07.078.
Chen B, Dang L, Zhang X, Fang W, Hou M, Liu T, Wang Z. 2017. Physicochemical properties and micro-structural characteristics in starch from kudzu root as affected by cross-linking. Food Chem 219: 93-101. DOI:10.1016/j.foodchem.2016.09.128.
Chen Q, Yu H, Wang L, Abdin Z, Chen, Y, Wang J, Zhou W, Yang X, Khan RU, Zhang H, Chen X. 2015. Recent progress in chemical modification of starch and its applications. RSC Adv 5(83): 67459-67474. DOI:10.1039/c5ra10849g.
Chung HJ, Liu Q. 2012. Physicochemical properties and in vitro digestibility of flour and starch from pea (Pisum sativum L.) cultivars. Int J Biol Macromol 50(1): 131-137. DOI:10.1016/j.ijbiomac.2011.10.004.
Du SK, Jiang H, Ai Y, Jane JL. 2014. Physicochemical properties and digestibility of common bean (Phaseolus vulgaris L.) starches. Carbohydr Polym 108(1): 200-205. DOI:10.1016/j.carbpol.2014.03.004.
Estrada-León RJ, Moo-Huchin VM, Ríos-Soberanis CR, Betancur-Ancona D, May-Hernández LH, Carrillo-Sánchez FA, Cervantes-Uc JM, Pérez-Pacheco E. 2016. The effect of isolation method on properties of parota (Enterolobium cyclocarpum) starch. Food Hydrocoll 57: 1-9. DOI:10.1016/j.foodhyd.2016.01.008.
Fan X, Zhang S, Lin L, Zhao L, Liu A, Wei C. 2016. Properties of new starches from tubers of Arisaema elephas, yunnanense and erubescens. Food Hydrocoll 61: 183-190. DOI:10.1016/j.foodhyd.2016.05.015.
Gunaratne A, Bentota A, Cai YZ, Collado L, Corke H. 2011. Functional, digestibility, and antioxidant properties of brown and polished rice flour from traditional and new-improved varieties grown in Sri Lanka. Starch/ Stärke 63(8): 485-492. DOI:10.1002/star.201000105.
Grace NCF, Henry CJ.2020. The physicochemical characterization of unconventional starches and flours used in Asia. Foods 9: 1-12. DOI:10.3390/foods9020182.
Hood-Niefer SD, Warkentin TD, Chibbar RN, Vandenberg A, Tyler RT. 2012. Effect of genotype and environment on the concentrations of starch and protein in, and the physicochemical properties of starch from, field pea and fababean. J Sci Food Agric 92(1): 141-150. DOI:10.1002/jsfa.4552.
Hoover R, Hughes T, Chung HJ, Liu Q. 2010. Composition, molecular structure, properties, and modification of pulse starches: A review. Food Res Int 43(2): 399-413. DOI:10.1016/j.foodres.2009.09.001.
Hoover R, Swamidas G, Vasanthan T. 1993. Studies on the physicochemical properties of native, defatted, and heat-moisture treated pigeon pea (Cajanus cajan L) starch. Carbohydr Res 246(1): 185-203. DOI:10.1016/0008-6215(93)84032-2
Huang J, Shang Z, Man J, Liu Q, Zhu C, Wei C. 2015. Comparison of molecular structures and functional properties of high-amylose starches from rice transgenic line and commercial maize. Food Hydrocoll 46: 172-179. DOI:10.1016/j.foodhyd.2014.12.019.
Jan KN, Panesar PS, Rana JC, Singh S. 2017. Structural, thermal and rheological properties of starches isolated from Indian quinoa varieties. Int J Biol Macromol 102: 315-322. DOI:10.1016/j.ijbiomac.2017.04.027.
Joshi M, Aldred P, McKnight S, Panozzo, JF, Kasapis S, Adhikari R, Adhikari B. 2013. Physicochemical and functional characteristics of lentil starch. Carbohydr Polym 92: 1484-1496. DOI: 10.1016/j.carbpol.2012.10.035.
Juliano BO. 1971. A Simplified assay for milled-rice amylose. Cereal Sci Today 16(11): 334-340.
Kaur M, Sandhu KS. 2010. In vitro digestibility, structural and functional properties of starch from pigeon pea (Cajanus cajan) cultivars grown in India. Food Res Int 43(1): 263-268. DOI:10.1016/j.foodres.2009.09.027.
Lawal OS. 2011. Hydroxypropylation of pigeon pea (Cajanus cajan) starch: Preparation, functional characterizations and enzymatic digestibility. LWT - Food Sci Technol 44(3): 771-778. DOI:10.1016/j.lwt.2010.05.025.
Liu C, Wang S, Copeland L, Wang S. 2015. Physicochemical properties and in vitro digestibility of starches from field peas grown in China. LWT - Food Sci Technol 64(2): 829-836. DOI:10.1016/j.lwt.2015.06.060.
Ma M, Wang Y, Wang M, Jane J, Du S. 2017. Physicochemical properties and in vitro digestibility of legume starches. Food Hydrocoll 63: 249-255. DOI:10.1016/j.foodhyd.2016.09.004.
Maaran S, Hoover R, Donner E, Liu Q. 2014. Composition, structure, morphology and physicochemical properties of lablab bean, navy bean, rice bean, tepary bean and velvet bean starches. Food Chem 152: 491-499. DOI:10.1016/j.foodchem.2013.12.014.
Monteiro S, Martins J, Magalhães FD, Carvalho L. 2016. Low density wood-based particleboards bonded with foamable sour cassava starch: Preliminary studies. Polymers 8: 1-11. DOI:10.3390/polym8100354.
Narina SS, Bhardwaj HL, Hamama AA, Burke JJ, Pathak SC, Xu Y. 2014. Seed protein and starch qualities of drought tolerant pigeon pea and native tepary beans. J Agric Sci 6(11): 247-259. DOI:10.5539/jas.v6n11p247.
Nissar J, Ahad T, Naik HR, Hussain SZ. 2017. Resistant starch- chemistry and nutritional properties. Int J Food Sci Nutr 2(6): 95-108.
Oyeyinka SA, Singh S, Amonsou EO. 2016. Physicochemical properties of starches extracted from bambara groundnut landraces. Starch/ Stärke 68: 1-8. DOI:10.1002/star.201600089.
Rani S, Poswal G, Yadav R, Deen MK. 2014. Screening of pigeon pea (Cajanus cajan L.) seeds for study of their flavonoids, total phenolic content and antioxidant properties. Int J Pharm Sci Rev Res 28(2): 90-94.
Ratnaningsih N, Suparmo, Harmayani E, Marsono Y. 2016. Composition, microstructure, and physicochemical properties of starches from Indonesian cowpea (Vigna unguiculata) varieties. Int Food Res J 23(5): 2041-2049.
Ratnayake WS, Hoover R, Shahidi F, Perera C, Jane J. 2001. Composition, molecular structure, and physicochemical properties of starches from four field pea (Pisum sativum L.) cultivars. Food Chem 74(2): 189-202. DOI:10.1016/S0308-8146(01)00124-8.
Ratnayake WS, Hoover R, Warkentin T. 2002. Pea starch: Composition, structure and properties - A review. Starch/ Stärke 54(6): 217-234.
Sandhu KS, Lim ST. 2008. Digestibility of legume starches as influenced by their physical and structural properties. Carbohydr Polym 71(2): 245-252. DOI:10.1016/j.carbpol.2007.05.036.
Shao Y, Mao L, Guan W, Wei X, Yang Y, Xu F, Li Y, Jiang Q. 2020. Physicochemical and structural properties of low-amylose Chinese yam (Dioscorea opposita Thunb.) starches. Int J Biol Macromol 164: 427-433. DOI:10.1016/j.ijbiomac.2020.07.054.
Singh U, Voraputhaporn W, Rao PV, Jambunathan R. 1989. Physicochemical characteristics of pigeon pea and mung bean starches and their noodle quality. J Food Sci 54(5): 1293-1297. DOI:10.1111/j.1365-2621.1989.tb05976.x.
Tester RF, Karkalas J, Qi X. 2004. Starch-composition, fine structure and architecture. J Cereal Sci 39(2): 151-165. DOI.:10.1016/j.jcs.2003.12.001
Tinay AHE, Hardalou SBE, Nour AM. 1983. Comparative study of three legume starches. Int J Food Sci Technol 18(1): 1-9. DOI:10.1111/j.1365-2621.1983.tb00239.x.
Torres MD, Moreira R, Chenlo F, Morel MH, Barron C. 2014. Physicochemical and structural properties of starch isolated from fresh and dried chestnuts
and chestnut flour. Food Technol Biotechnol 52(1): 135-139.
Wani AA, Singh P, Shah MA, Schweiggert-Weisz U, Gul K, Wani IA. 2012. Rice starch diversity: effects on structural, morphological, thermal, and physicochemical properties-A Review. Compr Rev Food Sci Food Saf 11(5): 417-436. DOI: 10.1111/j.1541-4337.2012.00193.x.
Wani IA, Sogi DS, Hamdani AM, Gani A, Bhat NA, Shah A. 2016. Isolation, composition, and physicochemical properties of starch from legumes: A review. Starch/ Stärke 68(9-10): 834-845. DOI:10.1002/star.201600007.
Widowati S, Buckle KA. 1991. Sifat-sifat fisik dan mikroskopis pati gude (Cajanus cajan (L) Millsp). Agritech 11(2): 2-6. [Indonesian].
Yousif EI, Gadallah MGE, Sorour AM. 2012. Physico-chemical and rheological properties of modified corn starches and its effect on noodle quality. Ann Agric Sci 57(1):19-27. DOI:10.1016/j.aoas.2012.03.008.
Zhang Y, Zhu K, He S, Tan L, Kong X. 2016. Characterizations of high purity starches isolated from five different jackfruit cultivars. Food Hydrocoll 52: 785-794. DOI:10.1016/j.foodhyd.2015.07.037.
Most read articles by the same author(s)
- DIODE YONATA, PRIYANTO TRIWITONO, LILY ARSANTI LESTARI, YUDI PRANOTO, Physicochemical, structure and functional characteristics of Tacca leontopetaloides starches grown in Indonesia , Biodiversitas Journal of Biological Diversity: Vol. 24 No. 11 (2023)