Monthly Chaetocerotales diversity and abundance, and its relationship with water physicochemical parameters and phytoplankton diversity in Carey Island mangrove ecosystem, Malaysia

##plugins.themes.bootstrap3.article.main##

NURUL SHAHIDA REDZUAN
POZI MILOW

Abstract

Abstract. Redzuan NS, Milow P. 2021. Monthly Chaetocerotales diversity and abundance, and its relationship with water physicochemical parameters and phytoplankton diversity in Carey Island mangrove ecosystem, Malaysia. Biodiversitas 22: 2919-2927. Globally, phytoplankton of order Chaetocerotales has been reported to cause monospecific bloom events. The blooms that normally lead to ecosystem instability, also physically responsible for histological and physical damages to fishes. Regarding that order Chaetocerotales often display significant temporal variability, this study aimed to investigate the monthly variability of species composition and cell density of phytoplankton of order Chaetocerotales during high tide period immersion were investigated over a year period. In addition, this present study also aimed to analyze the relationship between Chaetocerotales diversity and abundance with physical and chemical parameters that potentially controlling their temporal variability. Samplings were carried out from April 2009 until March 2010 in the mangrove ecosystem of Carey Island, Selangor, Malaysia. Of 84 phytoplankton taxa recorded, 18 species belonged to order Chaetocerotales, i.e. the genera Bacteriastrum and Chaetoceros. Although initially the sampling was designed to study the overall phytoplankton, the study also aimed at high temporal variability in Chaetocerotaceae cells density has called for this paper to be written. Interestingly, order Chaetocerotales showed to have negative correlation with the total phytoplankton species. Chaetocerotales blooms at the study site were represented by multispecies blooms, with Chaetoceros curvisetus as the highest species in the events. Dissolved oxygen, on the other hand, showed to have negative correlation Chaetocerotales' cells density. All of the species, except the Chaetoceros subtilis and Chaetoceros neglectus displayed significant temporal monthly variability across twelve months of sampling. Nitrate, phosphate and temperature are potentially the parameters that stimulate the growth of the order, consequently causing bloom events.

##plugins.themes.bootstrap3.article.details##

References
Begum, M., Sahu, B.K., Das, A.K., Vinithkumar, N.V., Kirubagaran, R., 2015. Extensive Chaetoceros curvisetus bloom in relation to water quality in Port Blair Bay, Andaman Islands. Environ. Monit. Assess. 187, 1–14. https://doi.org/10.1007/s10661-015-4461-2
Bellinger, E.G., Sigee, D.C., 2010. Algae as Bioindicators, in: Freshwater Algae. John Wiley & Sons, Ltd, pp. 99–136. https://doi.org/10.1002/9780470689554.ch3
Bhattacharjee, D., Samanta, B., Danda, A.A., Bhadury, P., 2013. Temporal Succession of Phytoplankton Assemblages in a Tidal Creek System of the Sundarbans Mangroves?: An Integrated Approach. Int. J. Biodivers. 2013, 1–15. https://doi.org/10.1155/2013/824543
Booth, B.C., Larouche, P., Bélanger, S., Klein, B., Amiel, D., Mei, Z.P., 2002. Dynamics of Chaetoceros socialis blooms in the North Water. Deep. Res. Part II Top. Stud. Oceanogr. 49, 5003–5025. https://doi.org/10.1016/S0967-0645(02)00175-3
Bosak, S., Godrijan, J., Šilovi?, T., 2016. Dynamics of the marine planktonic diatom family Chaetocerotaceae in a Mediterranean coastal zone. Estuar. Coast. Shelf Sci. 180, 69–81. https://doi.org/10.1016/j.ecss.2016.06.026
Bosch-Belmar, M., Milisenda, G., Girons, A., Taurisano, V., Accoroni, S., Totti, C., Piraino, S., Fuentes, V., 2017. Consequences of Stinging Plankton Blooms on Finfish Mariculture in the Mediterranean Sea. Front. Mar. Sci. 4, 1–11. https://doi.org/10.3389/fmars.2017.00240
Bruno, D.W., Dear, G., Seaton, D.D., 1989. Mortality associated with phytoplankton blooms among farmed Atlantic salmon, Salmo salar L., in Scotland. Aquaculture 78, 217–222. https://doi.org/10.1016/0044-8486(89)90099-9
Chang Lim, H., Teng, S.T., Leaw, C.P., Iwataki, M., Lim, T., 2014. Phytoplankton assemblage of the Merambong Shoal, Tebrau Straits with note on potentially harmful species. Malayan Nat. J. 66, 198–211.
Evans, J.H., 1972. A modified sedimentation system for counting algae with an inverted microscope. Hydrobiologia 40, 247–250. https://doi.org/10.1007/BF00016796
Facca, C., Sfriso, A., 2007. Epipelic diatom spatial and temporal distribution and relationship with the main environmental parameters in coastal waters. Estuar. Coast. Shelf Sci. 75, 35–49. https://doi.org/10.1016/j.ecss.2007.03.033
Gwak, I.G., sic Jung, W., Kim, H.J., Kang, S.H., Jin, E.S., 2010. Antifreeze Protein in Antarctic Marine Diatom, Chaetoceros neogracile. Mar. Biotechnol. 12, 630–639. https://doi.org/10.1007/s10126-009-9250-x
Hashimoto, T., Hyodoh, K., Hirose, T., Nishikawa, S., Katano, T., Nakano, S.I., 2008. Evaluation of three phytoplankton species as food for the pearl oyster Pinctada fucata. Aquac. Int. 16, 309–318. https://doi.org/10.1007/s10499-007-9144-8
Hasle, G.R., Syvertsen, E.E., 1997. Chapter 2 - Marine Diatoms, in: Tomas, C.R. (Ed.), Identifying Marine Phytoplankton. Academic Press, San Diego, pp. 5–385. https://doi.org/https://doi.org/10.1016/B978-012693018-4/50004-5
Huo, W.Y., Shu, J.-J., 2005. Outbreak of Skeletonema costatum Bloom and Its Relations to Environmental Factors in Jiaozhou Bay, China. 2005 WSEAS Int. Conf. Environ. Ecosyst. Dev. 2005, 205–210.
Ishikawa, A., Furuya, K., 2004. The role of diatom resting stages in the onset of the spring bloom in the East China Sea. Mar. Biol. 145, 633–639. https://doi.org/10.1007/s00227-004-1331-9
Kang, K.-H., Seon, S.-C., Kim, J.-Mi., Zhuo, L.-L., Lim, S.-M., 2009. Effects of three microalgae, Tetraselmis chuii, Chaetoceros calcitrans, and Phaeodactylum tricornutm on larvae and spat growth of the trumpet shell.pdf. Korean J. Malacol.
Manna, S., Chaudhuri, K., Bhattacharyya, S., Bhattacharyya, M., 2010. Dynamics of Sundarban estuarine ecosystem: Eutrophication induced threat to mangroves. Saline Systems 6, 1–16. https://doi.org/10.1186/1746-1448-6-8
Moore, S.K., Trainer, V.L., Mantua, N.J., Parker, M.S., Laws, E.A., Backer, L.C., Fleming, L.E., 2008. Impacts of climate variability and future climate change on harmful algal blooms and human health. Environ. Heal. A Glob. Access Sci. Source 7, 1–12. https://doi.org/10.1186/1476-069X-7-S2-S4
Ochieng, E., Mary, M., 2013. Potentially Harmful Algae along the Kenyan Coast?: A Norm or 3, 1–12.
Paterson, R.F., McNeill, S., Mitchell, E., Adams, T., Swan, S.C., Clarke, D., Miller, P.I., Bresnan, E., Davidson, K., 2017. Environmental control of harmful dinoflagellates and diatoms in a fjordic system. Harmful Algae 69, 1–17. https://doi.org/10.1016/j.hal.2017.09.002
Poulsen, L.K., Reuss, N., 2002. The plankton community on Sukkertop and Fylla Banks off West Greenland during a spring bloom and post-bloom period: Hydrography, phytoplankton and protozooplankton. Ophelia 56, 69–85. https://doi.org/10.1080/00785236.2002.10409491
Razali, R.M., Leaw, C.P., Lim, H.C., Nyanti, L., Ishak, I., Lim, P.T., 2015. Harmful microalgae assemblage in the aquaculture area of Aman Island, Northen Strait of Malacca. Malaysian J. Sci. 34, 20–32.
Redzuan, N.S., Milow, P., 2019. Skeletonema costatum of mangrove ecosystem: Its dynamics across physico-chemical parameters variability. AACL Bioflux 12, 179–190.
Roy, M., Ray, S., Ghosh, B.P., 2012. Modelling of Impact of Detritus on Detritivorous Food Chain of Sundarban Mangrove Ecosystem , India. Procedia Environ. Sci. 13, 377–390. https://doi.org/10.1016/j.proenv.2012.01.035
Sidik, M.J., Rashed-Un-Nabi, M., Azharul Hoque, M., 2008. Distribution of phytoplankton community in relation to environmental parameters in cage culture area of Sepanggar Bay, Sabah, Malaysia. Estuar. Coast. Shelf Sci. 80, 251–260. https://doi.org/10.1016/j.ecss.2008.08.004
Smayda, T.J., 2006. Scottish Executive Environment Group Harmful Algal Bloom Communities in Scottish Coastal Waters?: Relationship to Fish Farming and Regional Comparisons – A Review February 2006 224.
Yamaguchi, H., Sakou, H., Fukami, K., Adachi, M., Yamaguchi, M., Nishijima, T., 2005a. Utilization of organic phosphorus and production of alkaline phosphatase by the marine phytoplankton , Heterocapsa circularisquama , Fibrocapsa japonica and Chaetoceros ceratosporum. Plankt. Biol. Ecol. 52, 67–75.
Yamaguchi, H., Yamaguchi, M., Fukami, K., Adachi, M., Nishijima, T., 2005b. Utilization of phosphate diester by the marine diatom Chaetoceros ceratosporus. J. Plankton Res. 27, 603–606. https://doi.org/10.1093/plankt/fbi027