Growth inhibition of Hydrilla verticillata by freshwater fungi

##plugins.themes.bootstrap3.article.main##

TRIADIATI TRIADIATI
NAMPIAH SUKARNO
https://orcid.org/0000-0003-1949-1113
IRMA SITI RAHMAH

Abstract

Abstract. Triadiati T, Sukarno N, Rahmah IS. 2021. Growth inhibition of Hydrilla verticillata by freshwater fungi. Biodiversitas 22: 2876-2882. The uncontrolled growth of hydrilla (Hydrilla verticillata (L.f.) Royle) in Mekarsari Fruit Garden, Bogor causes various losses. A Freshwater fungus is one of the alternatives to control hydrilla growth. Therefore, the study aimed to investigate the damage and growth inhibition of hydrilla using freshwater fungi. Freshwater fungi were isolated from Lake Mekarsari Fruit Garden. Hydrilla growth characteristics observed were stem length, stem nodus number, number of healthy leaves, leaf number, leaf damage, wet and dry weight. The results showed that a total of seven isolates of freshwater fungi were obtained from Lake Mekarsari Fruit Garden. Two species, i.e. Myrothecium sp. and Stachybotrys sp. were selected to control hydrilla growth. Fungal treatment reduced the stem length and leaf number of hydrilla. The combination of both fungal isolates showed less leaf damage than Myrothecium sp. The damage of hydrilla leaves by Myrothecium sp. and Stachybotrys sp. were 98.07% and 78.71%, respectively.

##plugins.themes.bootstrap3.article.details##

References
Abdallah MF, Ameye M, De Saeger S, Audenaert K, Haesaert G. 2018. Biological control of mycotoxigenic fungi and their toxins: An update for the pre-harvest approach. In Mycotoxins-Impact and Management Strategies. IntechOpen. 1-32. DOI: 10.5772/intechopen.76342.
Baniszewski J, Cuda PJ, Gezan SA, Sharma S, Weeks EN. 2016. Stem fragment regrowth of Hydrilla verticillata following desiccation. J. Aquat. Plant Manage. 54:53-60.
Barnett HL, Hunter BB. 1998. Illustrated Genera of Imperfect Fungi. 4th Edition, APS Press, St. Paul, 218 p.
Berger S, Sinha AK, Roitsch T. 2007. Plant physiology meets phytopathology: plant primary metabolism and plant-pathogen interaction. J.Exp. Bot. 58(15/16):4019-4026. DOI: 10.1093/jxb/erm298.
Chen Y, Ran SF, Dai DQ, Wang Y, Hyde KD, Wu YM, Jiang YL. 2016. Mycosphere Essay 2. Myrothecium. Mycosphere 7(1): 64-80. DOI: 10.5943/mycosphere/7/1/7.
Cimmino A, Masi M, Evidente M, Superchi S, Evidente A. 2015. Fungal phytotoxins with potential herbicidal activity: chemical and biological characterization. Nat. Prod. Rep. 32(12):1629-1653. DOI: 10.1039/C5NP00081E.
Coetzee JA, Hill MP, Schlange D. 2009. Potential spread of the invasive plant Hydrilla verticillata in South Africa based on anthropogenic spread and climate suitability. Biol. Invasions 11:801-812. DOI: 10.1007/s10530-008-9294-2.
Cordeau S, Triolet M, Wayman S, Steinberg C, Guillemin JP. 2016. Bioherbicides: Dead in the water? A review of the existing products for integrated weed management. J. Crop Prot. 87:44-9. DOI: 10.1016/j.cropro.2016.04.016.
Das AM, Manash PH, Goswami M, Yadav A, Khoud P. 2016. Extraction of cellulose from agricultural waste using montmorillonite K-10/LiOH and its conversion to renewable energy: biofuel by using Myrothecium gramineum. Carbohydr. Polym. 141:20-27. DOI: 10.1016/j.carbpol.2015.12.070.
Dewiyanti I. 2012. Keragaman spesies dan persen penutupan tumbuhan air di ekosistem danau laut tawar, Takengon, Provinsi Aceh. Depik 1(2):125-130. DOI: 10.13170/depik.1.2.51.
Efremov A, Bolotova Y, Mesterha´zy A, Toma C. 2018. Features of distribution of Hydrilla verticillata (L. ?l.) Royle (Hydrocharitaceae) in North Eurasia. J. Coast. Res. 34 (3): 675–686. DOI: 10.2112/JCOASTRES-D-17-00072.1.
Evidente A, Cimmino A, Andolfi A. 2013. The effect of stereochemistry on the biological activity of natural phytotoxins, fungicides, insecticides and herbicides. Chirality. 25(2): 59-78. DOI: 10.1002/chir.22124.
Haller WT, Sutton DL. 1975. Community structure and competition between hydrilla vegetative propagules. Hyacinth Control 13: 48-50.
Heil M, Bostock RM. 2002. Induced systemic resistance (ISR) against pathogens in the context of induced plants defenses. Ann. Bot. 89:503-512. DOI: 10.1093/aob/mcf076.
Hussner A, Stiers I, Verhofstad MJ, Bakker ES, Grutters BM, Haury J, Van Valkenburg JL, Brundu G, Newman J, Clayton JS, Anderson LW. 2017. Management and control methods of invasive alien freshwater aquatic plants: a review. Aquat. Bot. 136:112-37. DOI: 10.1016/j.aquabot.2016.08.002.
Hofstra DE, Clayton J, Green JD, Adam KD. 2000. RAPD profiling and isozyme analysis of New Zealand Hydrilla verticillata. Aquat. Bot. 66:153-166. DOI: 10.1016/S0304-3770(99)00067-4.
Joye GF, Paul RN. 1992. Histology of infection of Hydrilla verticillata by Macrophomina phaseolina. Weed Sci. 40:288-295.
Joye, GF. 1990. Biocontrol of Hydrilla verticillata with the endemic fungus Macrophomina phaseolina. Plant Dis. 74 (12): 1035-1036. DOI: 10.1094/PD-74-1035.
Kinsey GC, Paterson RR, Kelley J. 1999. Method for the determination of filamentous fungi in treated and untreated waters. Appl. Microbiol. Symp. Supp. 85:214-224.
Kongjornrak A, Teeranate P, Thinthani T, Piyaboon O. 2019. Screening, identification and evaluation of potential biocontrol fungi against water lettuce. IJAT. 5(1):55-62.
Li S, Hartman GL, Jarvis BB, Tak H. 2002. A Stachybotrys chartarum isolate from soybean. Mycopathologia 154:41. DOI: 10.1023/A:1015297907991.
Moreira CD, Scapini T, Muller S, Amroginski J, Golunski S, Pandolfi L, Galon L, Jacques RJ, de Andrade N, Bevilacqua CB, Mazutti MA. 2018. Production of compounds by phytopathogenic fungi for biological control of aquatic macrophytes. Bioresour. Technol. Rep. 3:22-26. DOI: 10.1016/j.biteb.2018.05.012.
Okunowo WO, Gbenle GO, Osuntoki AA, Adekunle AA. 2010. Media studies on Myrothecium roridum Tode: A potential biocontrol agent for water hyacinth. J. Yeast Fungal Res. 1(4):55-61.
Okunowo WO, Osuntoki AA, Adekunle AA. 2011. Myrothecium roridum Tode and its toxin shows potential for management of water lettuce. Phytopath, 101 (6): S131.
Okunowo WO, Osuntoki AA, Adekunle AA, Gbenle GO. 2013. Occurrence and effectiveness of an indigenous strain of Myrothecium roridum Tode: Fries as a bioherbicide for water hyacinth (Eichhornia crassipes) in Nigeria. Biocontrol. Sci. Techn. 23(12):1387-401. DOI: 10.1080/09583157.2013.839981.
Okunowo WO, Osuntoki AA, Adekunle AA, Gbenle GO, Abbas HK, Shier WT. 2019. Optimization of Myrothecium roridum tode: fries phytotoxin production and bioactivity on water hyacinth (Eichhornia crassipes). Toxin Rev. 24:1-5. DOI: 10.1080/15569543.2018.1564772.
Pendland J. 1979. Ultrastructural characteristics of Hydrilla leaf tissue. Tissue & Cell 11(1):79-88. DOI: 10.1016/0040-8166(79)90008-9.
Picart P, Diaz P, Pastor FIJ. 2008. Stachybotrys atra BP-A produces alkali-resistant and thermostable cellulases. ALJMAO 94:307-316. DOI: 10.1007/s10482-008-9248-9.
Ray P, Hill MP. 2013. Microbial agents for control of aquatic weeds and their role in integrated management. CAB Rev. 8(14):1-9. DOI: 10.1079/PAVSNNR20128014.
Saritha M, Tiwari R, Singh S, Rana S, Adak A, Sharma A, Arora A, Nain L. 2015. Bioprospecting for superior biomass hydrolyzing fungi from diverse habitats. Biodiv., Bioprospec. & Dev. 2(2):1-7. DOI: 10.4172/2376-0214.1000149.
Shabana YM, Cuda JP, Charudattan R. 2003. Evaluation of pathogens as potential biocontrol agents of hydrilla. Phytopathology. 151:607-613.
Shearer, J F. 1995. The use of pathogens for the management of hydrilla and Eurasian watermilfoil. Proc. 29th Ann. Meet. Aquat. Plant Control Res. Prog., Vicksburg, MS, USA, 14–17 November1994, pp. 124–129.
Shearer JF. 1998. Biological control of hydrilla using an endemic fungal pathogen. J. Aquatic. Plant. Manage. 36: 54 -56.
Shearer JF, Jackson MA. 2001. Partnering to develop an endemic fungal pathogen as a bioherbicide for management of Hydrilla verticillata. J. Aquat. Plant Manag. 41: 29.
Shearer JF, Jackson MA. 2006. Liquid culturing of microsclerotia of Mycoleptodiscus terrestris, a potential biological control agent for the management of hydrilla. Biol. Control. 38:298-306. DOI: 10.1016/j.biocontrol.2006.04.012.
Shearer JF, Grodowitz MJ, McFarland DG. 2007. Nutritional quality of Hydrilla verticillata (Lf) Royle and its effects on a fungal pathogen Mycoleptodiscus terrestris (Gerd.) Ostazeski. Biol. Control. 41(2):175-83. DOI: 10.1016/j.biocontrol.2007.02.003.
Souza AR, Baldoni DB, Lima J, Porto V, Marcuz C, Machado C, Ferraz RC, Kuhn RC, Jacques RJ, Guedes JV, Mazutti MA. 2017. Selection, isolation, and identification of fungi for bioherbicide production. Braz. J. Microbiol. 48(1):101-8. DOI: 10.1016/j.bjm.2016. 09.004.
Verma U, Charudattan R. 1993. Host range of Mycoleptodiscus terrestris, a microbial herbicide candidate for eurasian watermilfoil, Myriophyllum spicatum. Biol. Control 3:271-280.
Vurro M, Boari A, Casella F, Zonno MC. 2018. Fungal phytotoxins in sustainable weed management. Curr. Med. Chem. 25(2):268-86. DOI: 10.2174/0929867324666170426152331.