The Fourier transform infrared spectroscopy from Diplazium esculentum and Rivina humilis analysis to reveals the existence of necessary components in oil palm plantations of Ganoderma boninense control

##plugins.themes.bootstrap3.article.main##

WISMAROH SANNIWATI SARAGIH
EDISON PURBA
LISNAWITA
MOHAMMAD BASYUNI

Abstract

Abstract. Saragih WS, Purba E, Lisnawita, Basyuni M. 2021. The Fourier transform infrared spectroscopy from Diplazium esculentum and Rivina humilis analysis reveals necessary components in oil palm plantations of Ganoderma boninense control. Biodiversitas 22: 3645-3651. The Fourier transform infrared spectroscopy (FTIR) has been widely utilized for biological samples and biomolecular characterization. We aim to identify Ganoderma boninense through FTIR and obtain a functional group that can facilitate early basal stem rot detection. Here, positive control (KP) was not inoculated with G. boninense and negative control (KN) was inoculated with G. boninense. However, the treatment samples, Diplazium esculentum leaf extract, Rivina humilis leaf extract, and fungicide treatment, were not inoculated with G. boninense. The positive control oil-palm leaf samples exhibited spectral bands similar to those in the D. esculentum extract, R. humilis extract, and fungicide treatment. Strong bonds were observed at wavelengths 3379 cm-1, 2927 cm-1, 1639 cm-1, and 1056 cm-1. Others were moderate to weak, except the negative control samples with strong bonds at 2044 cm-1. This indicates amine N-H functional groups, alkane functional group C-H, functional group alkene C=C, C-O, functional group ester, and functional group isothiocyanate N=C=S (C4H5NS or CH2 = CHCH2N=C=S). The FTIR plot result denotes G. boninense through N=C=S Isothiocyanate functional group presence at 2140-1990 cm-1. This unique structure is only found in infected oil-palm leaf tissues of G. boninense. Our study suggests that FTIR spectroscopy is more beneficial than conventional methods in early detection of G. boninense infection in oil palm.

##plugins.themes.bootstrap3.article.details##

References
Ahmadi, P., Muharam, F. M., Ahmad, K., Mansor, S., & Seman, I. A. (2017). Early detection of ganoderma basal stem rot of oil palms using artificial neural network spectral analysis. Plant Disease, 101(6), 1009–1016. https://doi.org/10.1094/PDIS-12-16-1699-RE
Alexander, A., Dayou, J., Sipaut, C. S., Phin, C. K., & Chin, L. P. (2014). Some interpretations on FTIR results for the detection of Ganoderma boninense in oil palm tissue. Advances in Environmental Biology, 8(14), 30–32.
Alexander, A., Sipaut, C. S., Dayou, J., & Chong, K. P. (2017). Oil palm roots colonisation by Ganoderma boninense: An insight study using scanning electron microscopy. Journal of Oil Palm Research, 29(2), 262–266. https://doi.org/10.21894/jopr.2017.2902.10
Azmi, A. N. N., Bejo, S. K., Jahari, M., Muharam, F. M., Yule, I., & Husin, N. A. (2020). Early detection of ganoderma boninense in oil palm seedlings using support vector machines. Remote Sensing, 12(23), 1–21. https://doi.org/10.3390/rs12233920
Bahari, M. N. A., Sakeh, N. M., Abdullah, S. N. A., Ramli, R. R., & Kadkhodaei, S. (2018). Transciptome profiling at early infection of Elaeis guineensis by Ganoderma boninense provides novel insights on fungal transition from biotrophic to necrotrophic phase. BMC Plant Biology, 18(1), 1–26. https://doi.org/10.1186/s12870-018-1594-9
Brandl, H. (2013). Detection of fungal infection in Lolium perenne by Fourier transform infrared spectroscopy. Journal of Plant Ecology, 6(4), 265–269. https://doi.org/10.1093/jpe/rts043
Chen, J., Ullah, C., Reichelt, M., Beran, F., Yang, Z. L., Gershenzon, J., Hammerbacher, A., & Vassão, D. G. (2020). The phytopathogenic fungus Sclerotinia sclerotiorum detoxifies plant glucosinolate hydrolysis products via an isothiocyanate hydrolase. Nature Communications, 11(1), 1–12. https://doi.org/10.1038/s41467-020-16921-2
Chong, K. P., Lum, M. S., Foong, C. P., Wong, C. M. V. L., Atong, M., & Rossall, S. (2011). First identification of ganoderma boninense isolated from sabah based on PCR and sequence homology. African Journal of Biotechnology, 10(66), 14718–14723. https://doi.org/10.5897/AJB11.1096
Cooper, R. M., Flood, J., & Rees, R. W. (2011). Ganoderma boninense in oil palm plantations: current thinking on epidemiology, resistance and pathology. The Planter, 87(February), 515–526. http://opus.bath.ac.uk/23867/
Darus, A., & Seman, I. A. (1992). The Ganoderma selective medium (GSM).pdf. In PORIM Information Series (pp. 1–2).
Dubey, S., Guignard, F., Pellaud, S., Pedrazzetti, M., van der Schuren, A., Gaume, A., Schnee, S., Gindro, K., & Dubey, O. (2021). Isothiocyanate Derivatives of Glucosinolates as Efficient Natural Fungicides. PhytoFrontiersTM, 1(1), 40–50. https://doi.org/10.1094/phytofr-08-20-0010-r
Erukhimovitch, V., Tsror, L., Hazanovsky, M., & Talyshinsky, M. (2005). Identification of fungal phyto-pathogens by Fourier-transform infrared ( FTIR ) microscopy. 145–152.
Goh, K. M., Dickinson, M., Alderson, P., Yap, L. V., & Supramaniam, C. V. (2016). Development of an in planta infection system for the early detection of Ganoderma spp. in oil palm. Journal of Plant Pathology, 98(2). https://doi.org/10.4454/JPP.V98I2.019
Hayati, R., & Basyuni, M. (2019). Sequence approach of Elaeis guineensis for early detection of Ganoderma boninense resistance. IOP Conference Series: Earth and Environmental Science, 260(1). https://doi.org/10.1088/1755-1315/260/1/012127
Idris, A. S., Kushairi, D., Ariffin, D., & Basri, M. (2006). Technique for inoculation of oil palm germinated seeds with Ganoderma. MPOB Infomation Series, 314, 1–4.
Isha, A., Akanbi, F. S., Yusof, N. A., Osman, R., Mui-Yun, W., & Abdullah, S. N. A. (2019). An NMR metabolomics approach and detection of ganoderma boninense-infected oil palm leaves using MWCNT-based electrochemical sensor. Journal of Nanomaterials, 2019. https://doi.org/10.1155/2019/4729706
Kandan, A., Radjacommare, R., Ramanathan, A., Raguchander, T., Balasubramanian, P., & Samiyappan, R. (2009). Molecular biology of Ganoderma pathogenicity and diagnosis in coconut seedlings. Folia Microbiologica, 54(2), 147–152. https://doi.org/10.1007/s12223-009-0022-9
Kayalvizhi, V., & Antony, U. (2011). Microbial a nd physico-chemical changes in tomato juice subjected to pulsed electric field treatment. African Journal of Agricultural Research, 6(30), 6348–6353. https://doi.org/10.5897/A
Khan, A. L., Al-Harrasi, A., Numan, M., Abdulkareem, N. M., Mabood, F., & Al-Rawahi, A. (2021). Spectroscopic and molecular methods to differentiate gender in immature date palm (Phoenix dactylifera l.). Plants, 10(3), 1–15. https://doi.org/10.3390/plants10030536
Lai, D. S., Osman, A. F., Adnan, S. A., Ibrahim, I., Alrashdi, A. A., Salimi, M. N. A., & Ul-Hamid, A. (2021). On the use of opefb-derived microcrystalline cellulose and nano-bentonite for development of thermoplastic starch hybrid bio-composites with improved performance. Polymers, 13(6). https://doi.org/10.3390/polym13060897
Midot, F., Lau, S. Y. L., Wong, W. C., Tung, H. J., Yap, M. L., Lo, M. L., Jee, M. S., Dom, S. P., & Melling, L. (2019). Genetic diversity and demographic history of Ganoderma boninense in oil palm plantations of Sarawak, Malaysia inferred from ITS regions. Microorganisms, 7(10), 1–17. https://doi.org/10.3390/microorganisms7100464
Nazareth, T. de M., Quiles, J. M., Torrijos, R., Luciano, F. B., Mañes, J., & Meca, G. (2019). Antifungal and antimycotoxigenic activity of allyl isothiocyanate on barley under different storage conditions. Lwt, 112(April), 108237. https://doi.org/10.1016/j.lwt.2019.06.004
Penido, A., Mendes, P., Campos, I., & Mendes, L. (2013). Malaysian Journal of Microbiology. Malaysian Journal of Microbiology, 9(2), 166–175. https://doi.org/10.1017/CBO9781107415324.004
Priwiratama, H., Prasetyo, A. E., & Susanto, A. (2020). Incidence of basal stem rot disease of oil palm in converted planting areas and control treatments. IOP Conference Series: Earth and Environmental Science, 468(1). https://doi.org/10.1088/1755-1315/468/1/012036
Purba, A., Hayati, R., Putri, L. A. P., Chalil, D., Afandi, D., Syahputra, I., & Basyuni, M. (2020). Genetic diversity and structure of ganoderma boninense isolates from oil palm and other plantation crops. Biodiversitas, 21(2), 451–456. https://doi.org/10.13057/biodiv/d210204
Rahamah Bivi, M. S. H., Paiko, A. S., Khairulmazmi, A., Akhtar, M. S., & Idris, A. S. (2016). Control of basal stem rot disease in oil palm by supplementation of calcium, copper, and salicylic acid. Plant Pathology Journal, 32(5), 396–406. https://doi.org/10.5423/PPJ.OA.03.2016.0052
Rakib, M. R. M., Bong, C. F. J., Khairulmazmi, A., & Idris, A. S. (2014). Genetic and morphological diversity of Ganoderma species isolated from infected oil palms (Elaeis guineensis). International Journal of Agriculture and Biology, 16(4), 691–699.
Rattanata, N., Daduang, S., Phaetchanla, S., Bunyatratchata, W., Promraksa, B., Tavichakorntrakool, R., Uthaiwat, P., Boonsiri, P., & Daduang, J. (2014). Antioxidant and antibacterial properties of selected Thai weed extracts. Asian Pacific Journal of Tropical Biomedicine, 4(11), 890–895. https://doi.org/10.12980/APJTB.4.2014APJTB-2014-0422
Rebitanim, N. A., Hanafi, M. M., Idris, A. S., Abdullah, S. N. A., Mohidin, H., & Rebitanim, N. Z. (2020). GanoCare® Improves Oil Palm Growth and Resistance against Ganoderma Basal Stem Rot Disease in Nursery and Field Trials. BioMed Research International, 2020. https://doi.org/10.1155/2020/3063710
Said, N., Omar, D., Nasehi, A., & Wong, M. Y. (2019). Pyraclostrobin suppressed ganoderma basal stem rot (BSR), promoted plant growth and induced early expression of ?-1,3-glucanase in oil palm (elaeis guineensis). Journal of Oil Palm Research, 31(2), 248–261. https://doi.org/10.21894/jopr.2019.0021
Salman, A., Tsror, L., Pomerantz, A., Moreh, R., Mordechai, S., & Huleihel, M. (2010). FTIR spectroscopy for detection and identification of fungal phytopathogenes. Spectroscopy, 24(3–4), 261–267. https://doi.org/10.3233/SPE-2010-0448
Saragih, W. S., & Purba, E. (2018). IDENTIFICATION AND ANALYSIS OF WEED VEGETATION AS Ganoderma PRESENCE MARKER ON OIL PALM PLANTATION. Jurnal Natural, 18(3), 135–140. https://doi.org/10.24815/jn.v0i0.11595
Saragih, W. S., & Purba, E. (2019). Analisis Hara Cu dan Zn pada Vegetasi Gulma sebagai Penanda Keberadaan Jamur Ganoderma dari Kebun Kelapa Sawit. Jurnal Agrotek Tropika, 7(3), 519. https://doi.org/10.23960/jat.v7i3.3237
Siddiqui, Y., Surendran, A., Paterson, R. R. M., Ali, A., & Ahmad, K. (2021). Current strategies and perspectives in detection and control of basal stem rot of oil palm. Saudi Journal of Biological Sciences, 28(5), 2840–2849. https://doi.org/10.1016/j.sjbs.2021.02.016
Susanto, A. (2011). Informasi Organisme Pengganggu Tanaman. Pusat Penelitian Kelapa Sawit, 0001(51), 3–6.
Utomo, C., & Niepold, F. (2000). Development of diagnostic methods for detecting Ganoderma-infected oil palms. Journal of Phytopathology, 148(9–10), 507–514. https://doi.org/10.1046/j.1439-0434.2000.00478.x
Viera-Torres, M., Sinde-González, I., Gil-Docampo, M., Bravo-Yandún, V., & Toulkeridis, T. (2020). Generating the baseline in the early detection of bud rot and red ring disease in oil palms by geospatial technologies. Remote Sensing, 12(19), 1–21. https://doi.org/10.3390/rs12193229
Zhang, M., Li, Y., Bi, Y., Wang, T., Dong, Y., Yang, Q., & Zhang, T. (2020). 2-Phenylethyl Isothiocyanate Exerts Antifungal Activity against Alternaria alternata by Affecting Membrane Integrity and Mycotoxin Production. Toxins, 12(2). https://doi.org/10.3390/toxins12020124

Most read articles by the same author(s)

1 2 3 > >>