Peptide profiling of goat milk fermented by Lactobacillus delbrueckii ssp. delbrueckii BD7: Identification of potential biological activity

##plugins.themes.bootstrap3.article.main##

YULIANA TANDI RUBAK
https://orcid.org/0000-0003-4685-1639
LILIS NURAIDA
DYAH ISWANTINI
https://orcid.org/0000-0003-1113-2722
ENDANG PRANGDIMURTI
https://orcid.org/0000-0002-1287-3031
MAXS URIAS EBENHAIZAR SANAM

Abstract

Abstract. Rubak YT, Nuraida L, Iswantini D, Prangdimurti E, Sanam MUE. 2021. Peptide profiling of goat milk fermented by Lactobacillus delbrueckii ssp. delbrueckii BD7: Identification of potential biological activity. Biodiversitas 22: 3136-3145. This study investigated the angiotensin-converting enzyme (ACE) inhibitory activity in fermented goat milk by Lactobacillus delbrueckii ssp. delbrueckii BD7, characterizing the peptide and its potential as a bioactive peptide. The starter culture (2%) was inoculated into pasteurized goat skim milk (11%), then incubated at 37 °C until it reached pH 4.6. Centrifugation at 6000 g x 10 minutes at 4 °C was applied. The supernatant obtained was then ultrafiltrated using a membrane cut-off with a molecular weight of 3 kDa, and the fraction obtained was analyzed to determine the inhibitory activity of ACE. Peptides were characterized using Nano LC / MS / MS, and identification as bioactive peptides was carried out based on a literature review. ACE inhibitory activity of fermented goat milk of Lb. delbrueckii ssp. delbrueckii BD7 was 55.98 ± 3.53%. A total of 157 peptides were released with molecular weights ranging from 770.78 - 2081.12 Da and having 7-19 amino acid residues. The main peptide was hydrolyzed from casein (72.6%), cleavage in the parent protein, specific for aliphatic and aromatic amino acids. Identification of bioactive peptides based on the similarity of amino acid residues at C-terminal obtained 28 ACE inhibitor peptides, 19 antioxidant peptides, and ten antimicrobial peptides. Some of these peptides have homologous sequences with previously reported peptides. Lb. delbrueckii ssp. delbrueckii BD7 has the potential as a starter culture to produce fermented milk, which is rich in biological activity.

##plugins.themes.bootstrap3.article.details##

References
Abdel-Hamid M, Otte J, De Gobba C, Osman A, Hamad E. 2017. Angiotensin I-converting enzyme inhibitory activity and antioxidant capacity of bioactive peptides derived from enzymatic hydrolysis of buffalo milk proteins. Int Dairy J 66: 91–98. DOI: 10.1016/j.idairyj.2016.11.006.
Agyei D, He L. 2015. Evaluation of cross-linked enzyme aggregates of Lactobacillus cell-envelope proteinases, for protein degradation. Food Bioprod Proces 94: 59–69. DOI: 10.1016/j.fbp.2015.01.004.
Ahmed AS, El-Bassiony T, Elmalt LM, Ibrahim HR. 2015. Identification of potent antioxidant bioactive peptides from goat milk proteins. Food Res Int 74: 80–88. DOI: 10.1016/j.foodres.2015.04.032.
Ali E, Nielsen SD, Abd-El Aal S, El-Leboudy A, Saleh E, LaPointe G. 2019. Use of Mass Spectrometry to Profile Peptides in Whey Protein Isolate Medium Fermented by Lactobacillus helveticus LH-2 and Lactobacillus acidophilus La-5. Frontiers in Nutrition 6: 1–19. DOI: 10.3389/fnut.2019.00152.
Aslam MZ, Shoukat S, Hongfei Z, Bolin Z. 2019. Peptidomic Analysis of ACE Inhibitory Peptides Extracted from Fermented Goat Milk. Int J Pept Res Ther 25: 1259–1270. DOI: 10.1007/s10989-018-9771-0.
Ayyash M, Al-Nuaimi AK, Al-Mahadin S, Liu SQ. 2018. In vitro investigation of anticancer and ACE-inhibiting activity, ?-amylase and ?-glucosidase inhibition, and antioxidant activity of camel milk fermented with camel milk probiotic: A comparative study with fermented bovine milk. Food Chem 239: 588–597. DOI: 10.1016/j.foodchem.2017.06.149.
Barla F, Koyanagi T, Tokuda N, Matsui H, Katayama T, Kumagai H, Michihata T, Sasaki T, Tsuji A, Enomoto T. 2016. The ?-aminobutyric acid-producing ability under low pH conditions of lactic acid bacteria isolated from traditional fermented foods of Ishikawa Prefecture, Japan, with a strong ability to produce ACE-inhibitory peptides. Biotechnol Rep 10: 105–110. DOI: 10.1016/j.btre.2016.04.002.
Biada?a A, Szablewski T, Lasik-Kurdy? M, Cegielska-Radziejewska R. 2020. Antimicrobial activity of goat’s milk fermented by single strain of kefir grain microflora. Eur Food Res Technol 246: 1231–1239. DOI: 10.1007/s00217-020-03483-2.
Birkemo GA, O’Sullivan O, Ross RP, Hill C. 2009. Antimicrobial activity of two peptides casecidin 15 and 17, found naturally in bovine colostrum. J Appl Microbiol 106: 233–240. DOI: 10.1111/j.1365-2672.2008.03996.
Chaves-López C, Serio A, Paparella A, Martuscelli M, Corsetti A, Tofalo R, Suzzi G. 2014. Impact of microbial cultures on proteolysis and release of bioactive peptides in fermented milk. Food Microbiol 42: 117–121. DOI: 10.1016/j.fm.2014.03.005.
Chen Y, Li C, Xue J, Kwok L, Yang J, Zhang H, Menghe B. 2015. Characterization of angiotensin-converting enzyme inhibitory activity of fermented milk produced by Lactobacillus helveticus. J Dairy Sci 98: 5113–5124. DOI: 10.3168/jds.2015-9382.
Chusman N. 1971. Spectrophoto ~ Etric Assay and Properties of the an ~ Iotens ~ N-Converting Enzyme of Rabbit Lung. Biochem Pharmacol 20: 1637–1648. DOI: 10.1016/0006-2952(71)90292-9.
Contreras M. del mar, Carron R, Montero MJ, Ramos M, Recio I. 2009. Novel casein-derived peptides with antihypertensive activity. Int Dairy J 19: 566–573. DOI: 10.1016/j.idairyj.2009.05.004.
Corrons MA, Liggieri CS, Trejo SA, Bruno MA. 2017. ACE-inhibitory peptides from bovine caseins released with peptidases from Maclura pomifera latex. Food Res Int 93: 8–15. DOI: 10.1016/j.foodres.2017.01.003.
Daliri EBM, Lee BH, Oh DH. 2017. Current Trends and Perspectives of Bioactive Peptides. Crit Rev Food Sci Nutr 93: 88–93. DOI: 10.1080/10408398.2017.1319795.
Dallas DC, Citerne F, Tian T, Silva VLM, Kalanetra KM, Frese SA, Robinson RC, Mills D A, Barile D. 2016. Peptidomic analysis reveals proteolytic activity of kefir microorganisms on bovine milk proteins. Food Chem 197: 273–284. DOI: 10.1016/j.foodchem.2015.10.116.
de Lima M. dos SF, da Silva RA, da Silva MF, da Silva PAB, Costa RMPB, Teixeira JAC, Porto ALF, Cavalcanti MTH. 2018. Brazilian Kefir-Fermented Sheep’s Milk, a Source of Antimicrobial and Antioxidant Peptides. Probiotics Antimicrob Proteins 10: 446–455. DOI: 10.1007/s12602-017-9365-8.
Dullius A, Goettert MI, de Souza CFV. 2018. Whey protein hydrolysates as a source of bioactive peptides for functional foods – Biotechnological facilitation of industrial scale-up. J Funct Foods 42: 58–74. DOI: 10.1016/j.jff.2017.12.063.
Eisele T, Stressler T, Kranz B, Fischer L. 2013. Bioactive peptides generated in an enzyme membrane reactor using Bacillus lentus alkaline peptidase. Eur Food Res Technol 236: 483–490. DOI: 10.1007/s00217-012-1894-5.
Elfahri KR, Vasiljevic T, Yeager T, Donkor ON. 2016. Anti-colon cancer and antioxidant activities of bovine skim milk fermented by selected Lactobacillus helveticus strains. J Dairy Sci 99: 31–40. DOI: 10.3168/jds.2015-10160.
Fan H, Liao W, Wu J. 2018. Molecular interactions, bioavailability, and cellular mechanisms of angiotensin-converting enzyme inhibitory peptides. J Food Biochem 43: 1–8. DOI: 10.1111/jfbc.12572.
Fujita H, Yokoyama K, Yoshikawa M. 2000. Classification and Antihypertensive Activity of Angiotensin I-Converting Enzyme Inhibitory Peptides Derived from Food Proteins. J Food Sci 65: 564–569. DOI: 10.1111/j.1365-2621.2000.tb16049.
Gagnon MC, Strandberg E, Grau-Campistany A, Wadhwani P, Reichert J, Bürck J, Rabanal F, Auger M, Paquin JF, Ulrich AS. 2017. Influence of the Length and Charge on the Activity of ?-Helical Amphipathic Antimicrobial Peptides. Biochem 56: 1680–1695. DOI: 10.1021/acs.biochem.6b01071.
Georgalaki M, Zoumpopoulou G, Mavrogonatou E, Van Driessche G, Alexandraki V, Anastasiou R, Papadelli M, Kazou M, Manolopoulou E, Kletsas D, Devreese B, Papadimitriou K, Tsakalidou E. 2017. Evaluation of the antihypertensive angiotensin-converting enzyme inhibitory (ACE-I) activity and other probiotic properties of lactic acid bacteria isolated from traditional Greek dairy products. Int Dairy J 75: 10–21. DOI: 10.1016/j.idairyj.2017.07.003.
Gobbetti M, Ferranti P, Smacchi E, Goffredi F, Addeo F. 2000. Production of angiotensin-I-converting-enzyme-inhibitory peptides in fermented milks started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Appl Environ Microbiol 66: 3898–3904. DOI: 10.1128/AEM.66.9.3898-3904.2000.
Gonzalez-Gonzalez C, Gibson T, Jauregi P. 2013. Novel probiotic-fermented milk with angiotensin I-converting enzyme inhibitory peptides produced by Bifidobacterium bifidum MF 20/5. Int J Food Microbiol 167: 131–137. DOI: 10.1016/j.ijfoodmicro.2013.09.002.
Guo Y, Zhang T, Jiang B, Miao M, Mu W. 2014. The effects of an antioxidative pentapeptide derived from chickpea protein hydrolysates on oxidative stress in Caco-2 and HT-29 cell lines. J Funct Foods 7: 719–726. DOI: 10.1016/j.jff.2013.12.013.
Guo Y, Jiang X, Xiong B, Zhang T, Zeng X, Wu Z, Sun Y, Pan D. 2019. Production and transepithelial transportation of angiotensin-I-converting enzyme (ACE)-inhibitory peptides from whey protein hydrolyzed by immobilized Lactobacillus helveticus proteinase. J Dairy Sci 102: 961–975. DOI: 10.3168/jds.2018-14899.
Gútiez L, Gómez-Sala B, Recio I, del Campo R, Cintas LM, Herranz C, Hernández PE. 2013. Enterococcus faecalis strains from food, environmental, and clinical origin produce ACE-inhibitory peptides and other bioactive peptides during growth in bovine skim milk. Int J Food Microbiol 166: 93–101. DOI: 10.1016/j.ijfoodmicro.2013.06.019.
Hayes M, Ross RP, Fitzgerald GF, Hill C, Stanton C. 2006. Casein-derived antimicrobial peptides generated by Lactobacillus acidophilus DPC6026. Appl Environ Microbiol 72: 2260–2264. DOI: 10.1128/AEM.72.3.2260-2264.2006.
Hayes M, Stanton C, Slattery H, Sullivan OO, Hill C, Fitzgerald GF, Ross RP. 2007. Casein Fermentate of Lactobacillus animalis DPC6134 Contains a Range of Novel Propeptide Angiotensin-Converting Enzyme Inhibitors. Appl Environ Microbiol 73: 4658–4667. DOI: 10.1128/AEM.00096-07.
Hebert EM, Mamone G, Picariello G, Raya RR, Savoy G, Ferranti P, Addeo F. 2008. Characterization of the pattern of ?s1- and ?-casein breakdown and release of a bioactive peptide by a cell envelope proteinase from Lactobacillus delbrueckii subsp. lactis CRL 581. Appl Environ Microbiol 74: 3682–3689. DOI: 10.1128/AEM.00247-08.
Hernandez-Ledesma B, Amigo L, Ramos M, Recio I. 2004. Angiotensin Converting Enzyme Inhibitory Activity in Commercial Fermented Products. Formation of Peptides under Simulated Gastrointestinal Digestion. J Agricultural Food Chem 52: 1504–1510. DOI: 10.1021/jf034997b.
Hernández-Ledesma B, Miralles B, Amigo L, Ramos M, Recio I. 2005. Identification of antioxidant and ACE-inhibitory peptides in fermented milk. J Sci Food Agric 85: 1041–1048. DOI: 10.1002/jsfa.2063.
Ibrahim HR, Ahmed AS, Miyata T. 2017. Novel angiotensin-converting enzyme inhibitory peptides from caseins and whey proteins of goat milk. J Adv Res 8: 63–71. DOI: 10.1016/j.jare.2016.12.002.
Izquierdo-González JJ, Amil-Ruiz F, Zazzu S, Sánchez-Lucas R, Fuentes-Almagro CA, Rodríguez-Ortega MJ. 2019. Proteomic analysis of goat milk kefir: Profiling the fermentation-time dependent protein digestion and identification of potential peptides with biological activity. Food Chem 295: 456–465. DOI: 10.1016/j.foodchem.2019.05.178.
Ji D, Ma J, Xu M, Agyei D. 2021. Cell-envelope proteinases from lactic acid bacteria: Biochemical features and biotechnological applications. Compr Rev Food Sci Food Saf 20: 369–400. DOI: 10.1111/1541-4337.12676.
Kim HJ, Kang SG, Jaiswal L, Li J, Choi JH, Moon SM, Cho JY, Ham KS. 2016. Identification of four new angiotensin I-converting enzyme inhibitory peptides from fermented anchovy sauce. Appl Biol Chem 59: 25–31. DOI: 10.1007/s13765-015-0129-4.
Kliche T, Li B, Bockelmann W, Habermann D, Klempt M, de Vrese M, Wutkowski A, Clawin-Raedecker I, Heller KJ. 2017. Screening for proteolytically active lactic acid bacteria and bioactivity of peptide hydrolysates obtained with selected strains. Appl Microbiol Biotechnol 101: 7621–7633. DOI: 10.1007/s00253-017-8369-3.
Kunji ERS. 1996. The proteolytic systems of lactic acid bacteria. Antonie van Leeuwenhoek 70: 187–221. DOI: 10.1007/BF00395933.
LeBlanc J, Fliss I, Matar C. 2004. Induction of a humoral immune response following an Escherichia coli O157:H7 infection with an immunomodulatory peptidic fraction derived from Lactobacillus helveticus-fermented milk. Clin Diag Lab Immunol 11: 1171–1181. DOI: 10.1128/CDLI.11.6.1171-1181.2004.
Leclerc PL, Gauthier SF, Bachelard H, Santure M, Roy D. 2002. Antihypertensive activity of casein-enriched milk fermented by Lactobacillus helveticus. Int Dairy J 12: 995–1004. DOI: 10.1016/S0958-6946(02)00125-5.
Li C, Kwok LY, Mi Z, Bala J, Xue J, Yang J, Ma Y, Zhang H, Chen Y. 2017. Characterization of the angiotensin-converting enzyme inhibitory activity of fermented milks produced with Lactobacillus casei. J Dairy Sci 100: 9495–9507. DOI: 10.3168/jds.2017-12970.
Li S, Tang S, He Q, Hu J, Zheng J. 2019. Changes in Proteolysis in Fermented Milk Produced by Streptococcus thermophilus in Co-Culture with Lactobacillus plantarum or Bifidobacterium animalis subsp. lactis during Refrigerated Storage. Molecules 24: 3699. DOI: 10.3390/molecules24203699.
Li Z, Jiang A, Yue T, Wang J, Wang Y, Su J. 2013. Purification and identification of five novel antioxidant peptides from goat milk casein hydrolysates. J Dairy Sci 96: 4242–4251. DOI:10.3168/jds.2012-6511.
Liu Y and Pischetsrieder M. 2017. Identification and Relative Quantification of Bioactive Peptides sequentially released during simulated gastrointestinal digestion of comersial Kefir. J. Agric Food Chem 65: 1865–1873. DOI: 10.1021/acs.jafc.6b05385.
Lozo J, Strahinic I, Dalgalarrondo M, Chobert JM, Haertlé T, Topisirovic L. 2011. Comparative analysis of ?-casein proteolysis by PrtP proteinase from Lactobacillus paracasei subsp. paracasei BGHN14, PrtR proteinase from Lactobacillus rhamnosus BGT10 and PrtH proteinase from Lactobacillus helveticus BGRA43. I Dairy J 21: 863–868. DOI: 10.1016/j.idairyj.2011.05.002.
Lu Y, Govindasamy-Lucey S, Lucey JA. 2016. Angiotensin-I-converting enzyme-inhibitory peptides in commercial Wisconsin Cheddar cheeses of different ages. J Dairy Sci 99: 41–52. DOI: 10.3168/jds.2015-9569.
Matsui R, Honda R, Kanome M, Hagiwara A, Matsuda Y, Togitani T, Ikemoto N, Terashima M. 2018. Designing antioxidant peptides based on the antioxidant properties of the amino acid side-chains. Food Chem 245: 750–755. DOI: 10.1016/j.foodchem.2017.11.119.
Meisel H and Bockelmann W. 1999. Bioactive peptides encrypted in milk proteins: proteolytic activation and thropho-functional properties. Lactic Acid Bacteria: Gen Metabol Appl 76: 207–215. DOI: 10.1007/978-94-017-2027-4_10.
Moreno-Montoro M, Jauregi P, Navarro-Alarcón M, Olalla-Herrera M, Giménez-Martínez R, Amigo L, Miralles B. 2018. Bioaccessible peptides released by in vitro gastrointestinal digestion of fermented goat milks. Anal Bioanal Chem 410: 3597–3606. DOI: 10.1007/s00216-018-0983-0.
Nongonierma AB, Paolella S, Mudgil P, Maqsood S, FitzGerald R J. 2017. Dipeptidyl peptidase IV (DPP-IV) inhibitory properties of camel milk protein hydrolysates generated with trypsin. J Funct Foods 34: 49–58. DOI: 10.1016/j.jff.2017.04.016.
Padghan PV, Mann B, Sharma R, Bajaj R, Saini P. 2017. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks (Lassi) Fermented by Lactobacillus acidophillus with Consideration of Incubation Period and Simmering Treatment. Int J Pept Res Ther 23: 69–79. DOI: 10.1007/s10989-016-9540-x.
Panchal G, Hati S, Darji V, Prajapati J. 2020. Antioxidant activities, proteolytic activity and growth behavior of Lactobacillus cultures during fermentation of goat milk. Ind J Dairy Sci 73: 57–66. DOI: 10.33785/ijds.2020.v73i01.010.
Papadimitriou CG, Vafopoulou-Mastrojiannaki A, Silva SV, Gomes AM, Malcata FX, Alichanidis E. 2007. Identification of peptides in traditional and probiotic sheep milk yoghurt with angiotensin I-converting enzyme (ACE)-inhibitory activity. Food Chem 105: 647–656. DOI: 10.1016/j.foodchem.2007.04.028.
Pihlanto-Leppälä A, Rokka T, Korhonen H. 1998. Angiotensin I converting enzyme inhibitory peptides derived from bovine milk proteins. Int Dairy J 8: 325–331. DOI: 10.1016/S0958-6946(98)00048-X.
Qian B, Xing M, Cui L, Deng Y, Xu Y, Huang M, Zhang S. 2011. Antioxidant, antihypertensive, and immunomodulatory activities of peptide fractions from fermented skim milk with Lactobacillus delbrueckii ssp. bulgaricus LB340. J Dairy Res 78: 72–79. DOI: 10.1017/S0022029910000889.
Quirós A, Contreras M. del M, Ramos M, Amigo L, Recio I. 2009. Stability to gastrointestinal enzymes and structure-activity relationship of ?-casein-peptides with antihypertensive properties. Peptides 30: 1848–1853. DOI: 10.1016/j.peptides.2009.06.031.
Quirós A, Ramos M, Muguerza B, Delgado MA, Miguel M, Aleixandre A, Recio I. 2007. Identification of novel antihypertensive peptides in milk fermented with Enterococcus faecalis. Int Dairy J 17: 33–41. DOI:10.1016/j.idairyj.2005.12.011.
Rai AK, Sanjukta S, Jeyaram K. 2017. Production of angiotensin I converting enzyme inhibitory (ACE-I) peptides during milk fermentation and their role in reducing hypertension. Crit Rev Food Sci Nutr 57: 2789–2800. DOI: 10.1080/10408398.2015.1068736.
Rana S, Bajaj R, Mann B. 2018. Characterization of Antimicrobial and Antioxidative Peptides Synthesized by L. rhamnosus C6 Fermentation of Milk. Int J Pept Res Ther 24: 309–321. DOI: 10.1007/s10989-017-9616-2.
Raveschot C, Cudennec B, Deracinois B, Frémont M, Vaeremans M, Dugersuren J, Demberel S, Drider D, Dhulster P, Coutte F, Flahaut C. 2020. Proteolytic activity of Lactobacillus strains isolated from Mongolian traditional dairy products: A multiparametric analysis. Food Chem 304: 125415. DOI: 10.1016/j.foodchem.2019.125415.
Retnaningrum E, Yossi T, Nur’azizah R, Sapalina F, Kulla PDK. 2020. Characterization of a bacteriocin as biopreservative synthesized by indigenous lactic acid bacteria from dadih soya traditional product used in West Sumatra, Indonesia. Biodiversitas 21: 4192–4198. DOI: 10.13057/biodiv/d210933.
Rubak YT, Nuraida L, Iswantini D, Prangdimurti E. 2020. Angiotensin-I-converting enzyme inhibitory peptides in milk fermented by indigenous lactic acid bacteria. Vet World 13: 345–353. DOI: 10.14202/vetworld.2020.345-353.
Sabeena Farvin KH, Baron CP, Nielsen NS, Otte J, Jacobsen C. 2010. Antioxidant activity of yoghurt peptides: Part 2- Characterisation of peptide fractions. Food Chemi 123: 1090–1097. DOI: 10.1016/j.foodchem.2010.05.029.
Sah BNP, Vasiljevic T, McKechnie S, Donkor ON. 2014. Effect of probiotics on antioxidant and antimutagenic activities of crude peptide extract from yogurt. Food Chem 156: 264–270. DOI: 10.1016/j.foodchem.2014.01.105.
Sahariah P, Másson M. 2017. Antimicrobial Chitosan and Chitosan Derivatives: A Review of the Structure-Activity Relationship. Biomacromolecules 18: 3846–3868. https://doi.org/10.1021/acs.biomac.7b01058
Savijoki K, Ingmer H, Varmanen P. 2006. Proteolytic systems of lactic acid bacteria. Appl Microbiol Biotechnol 71: 394–406. DOI: 10.1007/s00253-006-0427-1.
Selvaggi M, Laudadio V, Dario C, Tufarelli V. 2014. Major proteins in goat milk: An updated overview on genetic variability. Mol Biol Rep 41: 1035–1048. DOI: 10.1007/s11033-013-2949-9.
Shanmugam VP, Kapila S, Sonfack TK, Kapila R. 2015. Antioxidative peptide derived from enzymatic digestion of buffalo casein. Int Dairy J 42: 1–5. DOI: 10.1016/j.idairyj.2014.11.001.
Shi M, Ahtesh F, Mathai M, McAinch AJ, Su XQ. 2017. Effects of fermentation conditions on the potential anti-hypertensive peptides released from yogurt fermented by Lactobacillus helveticus and Flavourzyme. Int J Food Sci Technol 52: 137–145. DOI: 10.1111/ijfs.13253.
Shu G, Huang J, Bao C, Meng J, Chen H, Cao J. 2018. Effect of different proteases on the degree of hydrolysis and angiotensin I-converting enzyme-inhibitory activity in goat and cow milk. Biomolecules 8: 101. DOI: 10.3390/biom8040101.
Shu G, Shi X, Chen H, Ji Z, Meng J. 2019. Optimization of Nutrient Composition for Producing ACE Inhibitory Peptides from Goat Milk Fermented by Lactobacillus bulgaricus LB6. Probiotics Antimicrob Proteins 11: 723-729. DOI:10.1007/s12602-018-9410-2.
Shu G, Yang H, Chen H, Zhang Q, Tian Y. 2015. Effect of incubation time, inoculum size, temperature, pasteurization time, goat milk powder and whey powder on ace inhibitory activity in fermented milk by L. Plantarum LP69. Acta Sci Pol Technol Aliment 14: 107–116. DOI: 10.17306/J.AFS.2015.2.12.
Sistla S. 2013. Structure-activity relationships of ?s-casein peptides with multifunctional biological activities. Mol Cell Biochem 384: 29–38. DOI: 10.1007/s11010-013-1778-4.
Srinivas S, Prakash V. 2010. Bioactive peptides from bovine milk ?-casein: Isolation, characterization and multifunctional properties. Int J Pept Res Ther 16: 7–15. DOI: 10.1007/s10989-009-9196-x.
Taha S, El Abd M, De Gobba C, Abdel-Hamid M, Khalil E, Hassan D. 2017. Antioxidant and antibacterial activities of bioactive peptides in buffalo’s yoghurt fermented with different starter cultures. Food Sci Biotechnol 26: 1325–1332. DOI: 10.1007/s10068-017-0160-9.
Torres-Llanez MJ, González-Córdova AF, Hernandez-Mendoza A, Garcia HS, Vallejo-Cordoba B. 2011. Angiotensin-converting enzyme inhibitory activity in Mexican Fresco cheese. J Dairy Sci 94: 3794–3800. DOI: 10.3168/jds.2011-4237.
Vermeirssen V, Camp J. Van, Verstraete W. 2004. Bioavailability of angiotensin I converting enzyme inhibitory peptides. Br J Nutr 92: 357. DOI: 10.1079/bjn20041189.
Villegas JM, Brown L, Savoy de Giori G, Hebert EM. 2015. Characterization of the mature cell surface proteinase of Lactobacillus delbrueckii subsp. lactis CRL 581. Appl Microbiol Biotechnol 99: 4277–4286. DOI: 10.1007/s00253-014-6258-6.
Villegas JM, Picariello G, Mamone G, Beatriz M, Turbay E, Giori GS. De, Hebert EM. 2014. Milk-derived angiotensin-I-converting enzymeinhibitory peptides generated by Lactobacillus delbrueckii subsp . lactis CRL 581. Peptidomics 1: 22–29. DOI: 10.2478/ped-2014-0002.
Wang H, Meng F, Yin L, Cheng Y, Lu A, Wang J. 2016. Changes of Composition and Angiotensin I-Converting Enzyme-Inhibitory Activity During Douchi Fermentation. Int J Food Prop 19: 2408–2416. DOI: 10.1080/10942912.2015.1040122.
Wang J, Li C, Xue J, Yang J, Zhang Q, Zhang H, Chen Y. 2015. Fermentation characteristics and angiotensin I-converting enzyme–inhibitory activity of Lactobacillus helveticus isolate H9 in cow milk, soy milk, and mare milk. J Dairy Sci 98: 3655–3664. DOI: 10.3168/jds.2015-9336.
Wang R, Lu X, Sun Q, Gao J, Ma L, Huang J. 2020. Novel ACE inhibitory peptides derived from simulated gastrointestinal digestion in vitro of sesame (Sesamum indicum L.) protein and molecular docking study. Int J Mol Sci 21:1059. DOI: 10.3390/ijms21031059.
Wu N, Xu W, Liu K, Xia Y, Shuangquan. 2019. Angiotensin-converting enzyme inhibitory peptides from Lactobacillus delbrueckii QS306 fermented milk. J Dairy Sci 102: 5913–5921. DOI: 10.3168/jds.2018-15901.
Zhao L, Cai X, Huang S, Wang S, Huang Y, Hong J, Rao P. 2015. Isolation and identification of a whey protein-sourced calcium-binding tripeptide Tyr-Asp-Thr. Int Dairy J 40: 16–23. DOI: 10.1016/j.idairyj.2014.08.013.
Zhao YQ, Zhang L, Tao J, Chi CF, Wang B. 2019. Eight antihypertensive peptides from the protein hydrolysate of Antarctic krill (Euphausia superba): Isolation, identification, and activity evaluation on human umbilical vein endothelial cells (HUVECs). Food Res Int 121: 197–204. DOI: 10.1016/j.foodres.2019.03.035.