Moisture content, density, and allometric model for estimating above-ground biomass of Peronema canescens trees in the private forest

##plugins.themes.bootstrap3.article.main##

KAMRAN KHAN
TOMY LISTYANTO
EMMA SORAYA

Abstract

Abstract. Khan K, Listyanto T, Soraya E. 2022. Moisture content, density, and allometric model for estimating above-ground biomass of Peronema canescens trees in the private forest. Biodiversitas 23: 1132-1139. The objectives of this study were to quantitatively measure the above-ground biomass (AGB) of Peronema canescens Jack species in a private forest in Indonesia using a destructive method and to develop an allometric model for the same. Six trees were sampled for above-ground biomass and their components (stem, branch, and leaves) were weighted and measured. Regression analysis was used for developing the allometric equation by using predictor variables of diameter at breast height (DBH), squared diameter at breast height together with height (DBH2H), and diameter and height separately (D & H). The average AGB of six sampled trees was 0.264 (26.38%) tons per tree. The fit allometric equation AGB = 0.254(DBH2H)0.886 was developed for estimating above-ground biomass of P canescens and it had 99.2% accuracy. The implications and recommendations were provided based on the results of the study.

##plugins.themes.bootstrap3.article.details##

References
A. Wani, A., K. Joshi, P., Singh, O., & Pandey, R. (2012). Carbon Inventory Methods in Indian Forests - A Review. International Journal of Agriculture and Forestry, 2(6), 315–323. https://doi.org/10.5923/j.ijaf.20120206.09
Akmalluddin, F., Sulistyawati, E., & Sutrisno. (2019). Potential Biomass Production Estimation of Wood Energy Species in Post Mining Reclamation Area Using CO2FIX Model. IOP Conference Series: Earth and Environmental Science, 394(1). https://doi.org/10.1088/1755-1315/394/1/012038
Almay, Widagdo, F. R., Li, F., Zhang, L., & Dong, L. (2020). Aggregated biomass model systems and carbon concentration variations for tree carbon quantification of natural mongolian oak in northeast China. Forests, 11(4). https://doi.org/10.3390/F11040397
Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J., & Hu, H. (2019). Allometric Equations for Estimating the Above-Ground Biomass of Five Forest Tree Species in Khangai, Mongolia. Forests, 10(8), 661. https://doi.org/10.3390/f10080661
Askar, Nuthammachot, N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018). Estimating aboveground biomass on private forest using sentinel-2 imagery. Journal of Sensors, 2018. https://doi.org/10.1155/2018/6745629
Berndes, G., Cowie, A. L., & Pelkmans, L. (2020). The use of forest biomass for climate change mitigation: dispelling some misconceptions. Retrieved from https://www.researchgate.net/publication/344075912_The_use_of_forest_biomass_for_climate_change_mitigation_dispelling_some_misconceptions
Chaturvedi, R. K., & Raghubanshi, • A S. (2013). Aboveground biomass estimation of small diameter woody species of tropical dry forest. Springer, 44, 509–519. https://doi.org/10.1007/s11056-012-9359-z
Deng, X., Zhang, L., Lei, P., Xiang, W., Yan, W., & Variations, W. Y. (2011). Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Annals of Forest Science, 71(4), 505–516. https://doi.org/10.1007/s13595-013-0356-yï
Dinas Lingkungan Hidup dan Kehutanan DIY. (2019). Buku statistik kehutanan. Yogyakarta. Retrieved from http://dlhk.jogjaprov.go.id/storage/files/Buku Data Statistik Kehutanan DIY 2019.pdf
Djomo, A. N., Ngoukwa, G., Zapfack, L., & Chimi, C. D. (2017). Variation of Wood Density in Tropical Rainforest Trees. Journal of Forests, 4(2), 16–26. https://doi.org/10.18488/journal.101.2017.42.16.26
Dong, L., Zhang, L., & Li, F. (2015). Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees - Structure and Function, 29(4), 1149–1163. https://doi.org/10.1007/s00468-015-1196-1
Guangyi, M., Yujun, S., & Saeed, S. (2017). Models for predicting the biomass of cunninghamialanceolata trees and stands in southeastern China. PLoS ONE, 12(1), 1–14. https://doi.org/10.1371/journal.pone.0169747
Hatta, G. M. (1999). Sungkai (Peronema canescens) a promising pioneer tree?: an experimental provenance study in Indonesia. Wageningen University. Wageningen University. Retrieved from https://library.wur.nl/WebQuery/wurpubs/61527
He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., … Zuo, Q. (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE, 13(1), 1–16. https://doi.org/10.1371/journal.pone.0186226
Hemery, G. E., Savill, P. S., & Pryor, S. N. (2005). Applications of the crown diameter-stem diameter relationship for different species of broadleaved trees. Forest Ecology and Management, 215(1–3), 285–294. https://doi.org/10.1016/j.foreco.2005.05.016
Huynh, T., Lee, D. J., Applegate, G., & Lewis, T. (2021). Field methods for above and belowground biomass estimation in plantation forests. MethodsX, 8, 101192. https://doi.org/10.1016/j.mex.2020.101192
Ikonen, V. P., Peltola, H., Wilhelmsson, L., Kilpeläinen, A., Väisänen, H., Nuutinen, T., & Kellomäki, S. (2008). Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. Forest Ecology and Management, 256(6), 1356–1371. https://doi.org/10.1016/j.foreco.2008.06.039
Kurniawan, T., Mayasari, I., & Prasojo, U. S. (2018). Private forest as a model in critical land reconstruction in upstream area, Indonesia. IOP Conference Series: Earth and Environmental Science, 200(1), 12051. https://doi.org/10.1088/1755-1315/200/1/012051
Manuri, S., Brack, C., Noor’an, F., Rusolono, T., Anggraini, S. M., Dotzauer, H., & Kumara, I. (2016). Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems, 3(1), 28. https://doi.org/10.1186/s40663-016-0087-2
Meijaard, E., Santika, T., Wilson, K. A., Budiharta, S., Kusworo, A., Law, E. A., … Struebig, M. J. (2021). Toward improved impact evaluation of community forest management in Indonesia. Conservation Science and Practice, 3(1). https://doi.org/10.1111/csp2.189
Moreno-Fernández, D., Hevia, A., Majada, J., & Cañellas, I. (2018). Do common silvicultural treatments affect wood density of Mediterranean Montane Pines? Forests, 9(2), 1–11. https://doi.org/10.3390/f9020080
Nizami, S. M. (2012). The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. Journal of Forestry Research, 23(3), 377–384. https://doi.org/10.1007/s11676-012-0273-1
Ramananantoandro, T., Ramanakoto, M. F., Rajoelison, G. L., Randriamboavonjy, J. C., & Rafidimanantsoa, H. P. (2016). Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Annals of Forest Science, 73(4), 1113–1124. https://doi.org/10.1007/s13595-016-0576-z
Santosa, S., Umar, M. R., Priosambodo, D., & Santosa, R. A. P. (2020). Estimation of biomass, carbon stocks and leaf litter decomposition rate in teak Tectona grandis linn plantations in city forest of hasanuddin university, Makassar. International Journal of Plant Biology, 11(1), 1–8. https://doi.org/10.4081/pb.2020.8541
Shmulsky, R., & Jones, P. D. (2018). Forest products and wood science: an introduction (6th ed.). United States: Wiley-Blackwell. Retrieved from http://library.lol/main/264D6B07427F6D8459CA5DE762BF40D4
Vieilledent, G., Fischer, F. J., Chave, J., Guibal, D., Langbour, P., & Gérard, J. (2018). New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. American Journal of Botany, 105(10), 1653–1661. https://doi.org/10.1002/ajb2.1175
Wirabuana, P. Y. A. P., Setiahadi, R., Sadono, R., Lukito, M., Martono, D. S., & Matatula, J. (2020). Allometric equations for estimating biomass of community forest tree species in madiun, Indonesia. Biodiversitas, 21(9), 4291–4300. https://doi.org/10.13057/biodiv/d210947
Wulandari, F. T. (2018). Variasi Kadar Air Tiga Jenis Bambu Berdasarkan arah Aksial. Jurnal Sangkareang Mataram, 4(3), 28–31. Retrieved from http://www.untb.ac.id/September-2018/
Zaenal, M., Tiryana, T., & Muhdin, M. (2020). Allometric Models for Estimating Tree Biomass of Dryland Secondary Forest in East Halmahera. Jurnal Wasian, 7(2), 87–101. https://doi.org/10.20886/jwas.v7i2.5948
Zeng, W. sheng, & Tang, S. zheng. (2012). Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. Journal of Forestry Research, 23(4), 593–598. https://doi.org/10.1007/s11676-012-0299-4
A. Wani, A., K. Joshi, P., Singh, O., & Pandey, R. (2012). Carbon Inventory Methods in Indian Forests - A Review. International Journal of Agriculture and Forestry, 2(6), 315–323. https://doi.org/10.5923/j.ijaf.20120206.09
Akmalluddin, F., Sulistyawati, E., & Sutrisno. (2019). Potential Biomass Production Estimation of Wood Energy Species in Post Mining Reclamation Area Using CO2FIX Model. IOP Conference Series: Earth and Environmental Science, 394(1). https://doi.org/10.1088/1755-1315/394/1/012038
Almay Widagdo, F. R., Li, F., Zhang, L., & Dong, L. (2020). Aggregated biomass model systems and carbon concentration variations for tree carbon quantification of natural mongolian oak in northeast China. Forests, 11(4). https://doi.org/10.3390/F11040397
Altanzagas, B., Luo, Y., Altansukh, B., Dorjsuren, C., Fang, J., & Hu, H. (2019). Allometric Equations for Estimating the Above-Ground Biomass of Five Forest Tree Species in Khangai, Mongolia. Forests, 10(8), 661. https://doi.org/10.3390/f10080661
Askar, Nuthammachot, N., Phairuang, W., Wicaksono, P., & Sayektiningsih, T. (2018). Estimating aboveground biomass on private forest using sentinel-2 imagery. Journal of Sensors, 2018. https://doi.org/10.1155/2018/6745629
Berndes, G., Cowie, A. L., & Pelkmans, L. (2020). The use of forest biomass for climate change mitigation: dispelling some misconceptions. Retrieved from https://www.researchgate.net/publication/344075912_The_use_of_forest_biomass_for_climate_change_mitigation_dispelling_some_misconceptions
Chaturvedi, R. K., & Raghubanshi, • A S. (2013). Aboveground biomass estimation of small diameter woody species of tropical dry forest. Springer, 44, 509–519. https://doi.org/10.1007/s11056-012-9359-z
Deng, X., Zhang, L., Lei, P., Xiang, W., Yan, W., & Variations, W. Y. (2011). Variations of wood basic density with tree age and social classes in the axial direction within Pinus massoniana stems in Southern China. Annals of Forest Science, 71(4), 505–516. https://doi.org/10.1007/s13595-013-0356-yï
Dinas Lingkungan Hidup dan Kehutanan DIY. (2019). Buku statistik kehutanan. Yogyakarta. Retrieved from http://dlhk.jogjaprov.go.id/storage/files/Buku Data Statistik Kehutanan DIY 2019.pdf
Djomo, A. N., Ngoukwa, G., Zapfack, L., & Chimi, C. D. (2017). Variation of Wood Density in Tropical Rainforest Trees. Journal of Forests, 4(2), 16–26. https://doi.org/10.18488/journal.101.2017.42.16.26
Dong, L., Zhang, L., & Li, F. (2015). Developing additive systems of biomass equations for nine hardwood species in Northeast China. Trees - Structure and Function, 29(4), 1149–1163. https://doi.org/10.1007/s00468-015-1196-1
Guangyi, M., Yujun, S., & Saeed, S. (2017). Models for predicting the biomass of cunninghamialanceolata trees and stands in southeastern China. PLoS ONE, 12(1), 1–14. https://doi.org/10.1371/journal.pone.0169747
Hatta, G. M. (1999). Sungkai (Peronema canescens) a promising pioneer tree?: an experimental provenance study in Indonesia. Wageningen University. Wageningen University. Retrieved from https://library.wur.nl/WebQuery/wurpubs/61527
He, H., Zhang, C., Zhao, X., Fousseni, F., Wang, J., Dai, H., … Zuo, Q. (2018). Allometric biomass equations for 12 tree species in coniferous and broadleaved mixed forests, Northeastern China. PLoS ONE, 13(1), 1–16. https://doi.org/10.1371/journal.pone.0186226
Hemery, G. E., Savill, P. S., & Pryor, S. N. (2005). Applications of the crown diameter-stem diameter relationship for different species of broadleaved trees. Forest Ecology and Management, 215(1–3), 285–294. https://doi.org/10.1016/j.foreco.2005.05.016
Huynh, T., Lee, D. J., Applegate, G., & Lewis, T. (2021). Field methods for above and belowground biomass estimation in plantation forests. MethodsX, 8, 101192. https://doi.org/10.1016/j.mex.2020.101192
Ikonen, V. P., Peltola, H., Wilhelmsson, L., Kilpeläinen, A., Väisänen, H., Nuutinen, T., & Kellomäki, S. (2008). Modelling the distribution of wood properties along the stems of Scots pine (Pinus sylvestris L.) and Norway spruce (Picea abies (L.) Karst.) as affected by silvicultural management. Forest Ecology and Management, 256(6), 1356–1371. https://doi.org/10.1016/j.foreco.2008.06.039
Koyuncu, C., & Yilmaz, R. (2013). Impact of private forest ownership on deforestation and poverty. Quality and Quantity, 47(3), 1657–1664. https://doi.org/10.1007/s11135-011-9618-7
Kurniawan, T., Mayasari, I., & Prasojo, U. S. (2018). Private forest as a model in critical land reconstruction in upstream area, Indonesia. IOP Conference Series: Earth and Environmental Science, 200(1), 12051. https://doi.org/10.1088/1755-1315/200/1/012051
Manuri, S., Brack, C., Noor’an, F., Rusolono, T., Anggraini, S. M., Dotzauer, H., & Kumara, I. (2016). Improved allometric equations for tree aboveground biomass estimation in tropical dipterocarp forests of Kalimantan, Indonesia. Forest Ecosystems, 3(1), 28. https://doi.org/10.1186/s40663-016-0087-2
Meijaard, E., Santika, T., Wilson, K. A., Budiharta, S., Kusworo, A., Law, E. A., … Struebig, M. J. (2021). Toward improved impact evaluation of community forest management in Indonesia. Conservation Science and Practice, 3(1). https://doi.org/10.1111/csp2.189
Moreno-Fernández, D., Hevia, A., Majada, J., & Cañellas, I. (2018). Do common silvicultural treatments affect wood density of Mediterranean Montane Pines? Forests, 9(2), 1–11. https://doi.org/10.3390/f9020080
Nizami, S. M. (2012). The inventory of the carbon stocks in sub tropical forests of Pakistan for reporting under Kyoto Protocol. Journal of Forestry Research, 23(3), 377–384. https://doi.org/10.1007/s11676-012-0273-1
Ramananantoandro, T., Ramanakoto, M. F., Rajoelison, G. L., Randriamboavonjy, J. C., & Rafidimanantsoa, H. P. (2016). Influence of tree species, tree diameter and soil types on wood density and its radial variation in a mid-altitude rainforest in Madagascar. Annals of Forest Science, 73(4), 1113–1124. https://doi.org/10.1007/s13595-016-0576-z
Santosa, S., Umar, M. R., Priosambodo, D., & Santosa, R. A. P. (2020). Estimation of biomass, carbon stocks and leaf litter decomposition rate in teak Tectona grandis linn plantations in city forest of hasanuddin university, Makassar. International Journal of Plant Biology, 11(1), 1–8. https://doi.org/10.4081/pb.2020.8541
Shmulsky, R., & Jones, P. D. (2018). Forest products and wood science: an introduction (6th ed.). United States: Wiley-Blackwell. Retrieved from http://library.lol/main/264D6B07427F6D8459CA5DE762BF40D4
Vieilledent, G., Fischer, F. J., Chave, J., Guibal, D., Langbour, P., & Gérard, J. (2018). New formula and conversion factor to compute basic wood density of tree species using a global wood technology database. American Journal of Botany, 105(10), 1653–1661. https://doi.org/10.1002/ajb2.1175
Wulandari, F. T. (2018). Variasi Kadar Air Tiga Jenis Bambu Berdasarkan arah Aksial. Jurnal Sangkareang Mataram, 4(3), 28–31. Retrieved from http://www.untb.ac.id/September-2018/
Zaenal, M., Tiryana, T., & Muhdin, M. (2020). Allometric Models for Estimating Tree Biomass of Dryland Secondary Forest in East Halmahera. Jurnal Wasian, 7(2), 87–101. https://doi.org/10.20886/jwas.v7i2.5948
Zeng, W. sheng, & Tang, S. zheng. (2012). Modeling compatible single-tree aboveground biomass equations for masson pine (Pinus massoniana) in southern China. Journal of Forestry Research, 23(4), 593–598. https://doi.org/10.1007/s11676-012-0299-4

Most read articles by the same author(s)