Novel carbonatogenic bacterial strain isolated from limestone quarry in East Java, Indonesia to improve concrete performance

##plugins.themes.bootstrap3.article.main##

ENNY ZULAIKA
MUHAMMAD ANDRY PRIO UTOMO
AJENG SELVYANA PANGESTU
NUR HIDAYATUL ALAMI
MAYA SHOVITRI
ENDRY NUGROHO PRASETYO
EDWIN SETIAWAN
ARIF LUQMAN
N. DWIANITA KUSWYTASARI
CANDRA IRAWAN

Abstract

Abstract. Zulaika E, Utomo MAP, Pangestu AS, Alami NH, Shovitri M, Prasetyo EN, Setiawan E, Luqman A, Kuswytasari ND, Irawan C. 2021. Novel carbonatogenic bacterial strain isolated from limestone quarry in East Java, Indonesia to improve concrete performance. Biodiversitas 22: 3890-3898. Carbonatogenic bacteria can precipitate CaCO3 in the form of calcite, aragonite, or vaterite. Calcite has the potential to be applied for strengthening concrete structures. This research aims to explore several new bacterial strains that can precipitate calcium carbonate leading to produce calcite and could be useful for strengthening concrete structures. Soil and stalactite samples were taken from a well-known limestone quarry in East Java, Indonesia. The isolated bacteria species were identified using 16S rRNA gene sequences. CaCO3 crystal properties were characterized using X-Ray Diffraction and Scanning Electron Microscopy. Six novels isolated CaCO3 precipitating bacterial strains; Bacillus huizhouensis JA1; B. galactosidilyticus JB3; B. niacini AK4, B. lentus SU1, Lysinibacillus macroides JB2, and Sporosarcina soli JA4 were successfully isolated and have the potential to enhance concrete strength. All isolates were able to produce CaCO3 in calcite form except B. galactosidilyticus JB3. The experimental concrete with the addition of bacterial cells showed higher compressive strength and maximum load compared to control concrete and met the requirements for building construction so that it could be applied for building structure materials.

##plugins.themes.bootstrap3.article.details##

References
Achal, V., & Mukherjee, A. (2015). A review of microbial precipitation for sustainable construction. In Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2015.04.051
Achal, V., & Pan, X. (2014). Influence of calcium sources on microbially induced calcium carbonate precipitation by Bacillus sp. CR2. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-014-0842-1
Alkhaly, Y. R. (2016). PERBANDINGAN RANCANGAN CAMPURAN BETON BERDASARKAN SNI 03-2834-2000 DAN SNI 7656:2012 PADA MUTU BETON 20 MPa. Teras Jurnal. https://doi.org/10.29103/tj.v6i1.67
Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W., & Lipman, D. J. (1997). Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. In Nucleic Acids Research. https://doi.org/10.1093/nar/25.17.3389
Alves, Alves, Mello, & Barros. (2019). Characterization of Bioconcrete and the Properties for Self-Healing. Proceedings. https://doi.org/10.3390/proceedings2019038004
Aono, R., Kaneko, H., & Horikoshi, K. (1996). Alkaline Growth pH-Dependent Increase of Respiratory and NADH-Oxidation Activities of the Facultatively Alkaliphilic Strain Bacillus lentus C-125. Bioscience, Biotechnology and Biochemistry. https://doi.org/10.1271/bbb.60.1243
Badoei-Dalfard, A., Amiri-Bahrami, M., Riahi-Madvar, A., Karami, Z., & Ebrahimi, M. A. (2012). Isolation, identification and characterization of organic solvent tolerant protease from Bacillus sp. DAF-01. Biological Journal of Microorganism, 1(2), 37–48.
Baker, G. C., Smith, J. J., & Cowan, D. A. (2003). Review and re-analysis of domain-specific 16S primers. In Journal of Microbiological Methods. https://doi.org/10.1016/j.mimet.2003.08.009
Barabesi, C., Galizzi, A., Mastromei, G., Rossi, M., Tamburini, E., & Perito, B. (2007). Bacillus subtilis gene cluster involved in calcium carbonate biomineralization. Journal of Bacteriology. https://doi.org/10.1128/JB.01450-06
Braissant, O., Decho, A. W., Dupraz, C., Glunk, C., Przekop, K. M., & Visscher, P. T. (2007). Exopolymeric substances of sulfate-reducing bacteria: Interactions with calcium at alkaline pH and implication for formation of carbonate minerals. Geobiology. https://doi.org/10.1111/j.1472-4669.2007.00117.x
Chidara, R., Nagulagama, R., & Yadav, S. (2014). Achievement of Early Compressive Strength in Concrete Using Sporosarcina pasteurii Bacteria as an Admixture. Advances in Civil Engineering. https://doi.org/10.1155/2014/435948
de Muynck, W., de Belie, N., & Verstraete, W. (2010). Microbial carbonate precipitation in construction materials: A review. In Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2009.02.006
Dhami, N. K., Reddy, M. S., & Mukherjee, A. (2014). Synergistic role of bacterial urease and carbonic anhydrase in carbonate mineralization. Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-013-0694-0
Dupraz, C., Reid, R. P., Braissant, O., Decho, A. W., Norman, R. S., & Visscher, P. T. (2009). Processes of carbonate precipitation in modern microbial mats. In Earth-Science Reviews. https://doi.org/10.1016/j.earscirev.2008.10.005
Felsenstein, J. (1985). Confidence Limits on Phylogenies: An Approach Using the Bootstrap. Evolution. https://doi.org/10.2307/2408678
Fujita, Y., Grant Ferris, F., Daniel Lawson, R., Colwell, F. S., & Smith, R. W. (2000). Calcium carbonate precipitation by ureolytic subsurface bacteria. Geomicrobiology Journal. https://doi.org/10.1080/782198884
Gavimath, C. C., Mali, B. M., Hooli, V. R., Mallpur, J. D., Patil, A. B., Gaddi, D., PTernikar, C. R., & Ravishankera, B. E. (2012). Potential application of bacteria to improve the strength of cement concrete. Int. J. Adv. Biotechnol. Res.
Goddette, D. W., Paech, C., Yang, S. S., Mielenz, J. R., Bystroff, C., Wilke, M. E., & Fletterick, R. J. (1992). The crystal structure of the Bacillus lentus alkaline protease, subtilisin BL, at 1.4 Å resolution. Journal of Molecular Biology. https://doi.org/10.1016/0022-2836(92)90843-9
Hall, T. A. (1999). BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symposium Series.
Hammad, I. A., Talkhan, F. N., & Zoheir, A. E. (2013). Urease activity and induction of calcium carbonate precipitation by Sporosarcina pasteurii NCIMB 8841. Journal of Applied Sciences Research.
Holt, J., Krieg, N., Sneath, P., Staley, J., & Williams, S. (1994). Bergey’s manual of determinative microbiology, 9th edn. Lippincot, Williams and Wilkins, Baltimore.
Hosseini Balam, N., Mostofinejad, D., & Eftekhar, M. (2017). Effects of bacterial remediation on compressive strength, water absorption, and chloride permeability of lightweight aggregate concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2017.04.003
Ivanov, V., Chu, J., & Stabnikov, V. (2015). Basics of construction microbial biotechnology. In Biotechnologies and Biomimetics for Civil Engineering. https://doi.org/10.1007/978-3-319-09287-4_2
Jimenez-Lopez, C., Jroundi, F., Pascolini, C., Rodriguez-Navarro, C., Piñar-Larrubia, G., Rodriguez-Gallego, M., & González-Muñoz, M. T. (2008). Consolidation of quarry calcarenite by calcium carbonate precipitation induced by bacteria activated among the microbiota inhabiting the stone. International Biodeterioration and Biodegradation. https://doi.org/10.1016/j.ibiod.2008.03.002
Jonkers, H. M., Thijssen, A., Muyzer, G., Copuroglu, O., & Schlangen, E. (2010). Application of bacteria as self-healing agent for the development of sustainable concrete. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2008.12.036
Kaur, N., Reddy, M. S., & Mukherjee, A. (2013). Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.1212.11087
Kim, H. J., Eom, H. J., Park, C., Jung, J., Shin, B., Kim, W., Chung, N., Choi, I. G., & Park, W. (2015). Calcium carbonate precipitation by Bacillus and sporosarcina strains isolated from concrete and analysis of the bacterial community of concrete. Journal of Microbiology and Biotechnology. https://doi.org/10.4014/jmb.1511.11008
Kim, W. J., Chun, W. Y., Park, J. S., & Lee, C. J. (2011). Characterization of mortar using calcified cell-CaCO3 by microbial biomineralization. Structures Congress 2011 - Proceedings of the 2011 Structures Congress. https://doi.org/10.1061/41171(401)276
Krishnapriya, S., Venkatesh Babu, D. L., & G., P. A. (2015). Isolation and identification of bacteria to improve the strength of concrete. Microbiological Research. https://doi.org/10.1016/j.micres.2015.03.009
Kumar, S., Stecher, G., & Tamura, K. (2016). MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Molecular Biology and Evolution. https://doi.org/10.1093/molbev/msw054
Li, P., & Qu, W. (2015). Bacteria for concrete surface treatment. In F. P. Torgal, J. A. Labrincha, M. v. Diamanti, C.-P. Yu, & H. K. Lee (Eds.), Biotechnologies and Biomimetics for Civil Engineering (pp. 325–358). Springer International Publishing.
Liu, Y., Li, C., Huang, L., He, Y., Zhao, T., Han, B., & Jia, X. (2017). Combination of a crude oil-degrading bacterial consortium under the guidance of strain tolerance and a pilot-scale degradation test. Chinese Journal of Chemical Engineering. https://doi.org/10.1016/j.cjche.2017.02.001
Manasa, S., UdayBhaskar, M., & Kumar, N. (2019). Performance of recycled aggregate concrete for M25 grade concrete. Int. J. of Eng. and Adv.Technol, 9(2), 4694–4700.
Mitchell, A. C., & Grant Ferris, F. (2006). The influence of bacillus pasteurii on the nucleation and growth of calcium carbonate. Geomicrobiology Journal. https://doi.org/10.1080/01490450600724233
Mobley, H. L. T., & Hausinger, R. P. (1989). Microbial ureases: Significance, regulation, and molecular characterization. In Microbiological Reviews. https://doi.org/10.1128/mmbr.53.1.85-108.1989
Mortensen, B. M., Haber, M. J., Dejong, J. T., Caslake, L. F., & Nelson, D. C. (2011). Effects of environmental factors on microbial induced calcium carbonate precipitation. Journal of Applied Microbiology. https://doi.org/10.1111/j.1365-2672.2011.05065.x
Ni, M., & Ratner, B. D. (2008). Differentiating calcium carbonate polymorphs by surface analysis techniques - An XPS and TOF-SIMS study. Surface and Interface Analysis. https://doi.org/10.1002/sia.2904
Obst, M., Dynes, J. J., Lawrence, J. R., Swerhone, G. D. W., Benzerara, K., Karunakaran, C., Kaznatcheev, K., Tyliszczak, T., & Hitchcock, A. P. (2009). Precipitation of amorphous CaCO3 (aragonite-like) by cyanobacteria: A STXM study of the influence of EPS on the nucleation process. Geochimica et Cosmochimica Acta. https://doi.org/10.1016/j.gca.2009.04.013
Ponraj, M., Talaiekhozani, A., IMohamadZin, R., Ismail, M., Majid, M. Z. A., Keyvanfar, A., & Kamyab, H. (2015). Bioconcrete Strength Durability Permeability Recycling and Effects on Human Health A Review. https://doi.org/10.15224/978-1-63248-062-0-28
Reeburgh, W. S. (2007). Oceanic Methane Biogeochemistry. ChemInform. https://doi.org/10.1002/chin.200720267
Rodriguez-Navarro, C., Rodriguez-Gallego, M., Chekroun, K. ben, & Gonzalez-Muñoz, M. T. (2003). Conservation of ornamental stone by Myxococcus xanthus-induced carbonate biomineralization. Applied and Environmental Microbiology. https://doi.org/10.1128/AEM.69.4.2182-2193.2003
Saitou, N., & Nei, M. (1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution. https://doi.org/10.1093/oxfordjournals.molbev.a040454
Sarayu, K., Iyer, N. R., & Murthy, A. R. (2014). Exploration on the biotechnological aspect of the ureolytic bacteria for the production of the cementitious materials - A review. In Applied Biochemistry and Biotechnology. https://doi.org/10.1007/s12010-013-0686-0
Sharma, M., Satyam, N., & Reddy, K. R. (2019). Investigation of various gram-positive bacteria for MICP in Narmada Sand, India. International Journal of Geotechnical Engineering. https://doi.org/10.1080/19386362.2019.1691322
Sharma, T. K., Alazhari, M., Heath, A., Paine, K., & Cooper, R. M. (2017). Alkaliphilic Bacillus species show potential application in concrete crack repair by virtue of rapid spore production and germination then extracellular calcite formation. Journal of Applied Microbiology. https://doi.org/10.1111/jam.13421
Siddique, R., & Chahal, N. K. (2011). Effect of ureolytic bacteria on concrete properties. In Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2011.04.010
SNI 1726:2002. (2002). Standar Perencanaan Ketahanan Gempa untuk Struktur Bangunan Gedung. In Badan Standardisasi Nasional Indonesia.
Sondi, I., & Salopek-Sondi, B. (2005). Influence of the primary structure of enzymes on the formation of CaCO 3 polymorphs: A comparison of plant (Canavalia ensiformis) and bacterial (Bacillus pasteurii) ureases. Langmuir. https://doi.org/10.1021/la051129v
Stocks-Fischer, S., Galinat, J. K., & Bang, S. S. (1999). Microbiological precipitation of CaCO3. Soil Biology and Biochemistry. https://doi.org/10.1016/S0038-0717(99)00082-6
Talinusa, O. G., Tenda, R., & Tamboto, W. J. (2014). Pengaruh benda uji terhadap kuat tekan beton. Jurnal Sipil Statik, 2(7), 344–351.
Tourney, J., & Ngwenya, B. T. (2009). Bacterial extracellular polymeric substances (EPS) mediate CaCO3 morphology and polymorphism. Chemical Geology. https://doi.org/10.1016/j.chemgeo.2009.01.006
Trushina, D. B., Bukreeva, T. v., Kovalchuk, M. v., & Antipina, M. N. (2014). CaCO3 vaterite microparticles for biomedical and personal care applications. Materials Science and Engineering C. https://doi.org/10.1016/j.msec.2014.04.050
van Paassen, L. A., Daza, C. M., Staal, M., Sorokin, D. Y., van der Zon, W., & van Loosdrecht, M. C. M. (2010). Potential soil reinforcement by biological denitrification. Ecological Engineering. https://doi.org/10.1016/j.ecoleng.2009.03.026
Wang, J., Ersan, Y. C., Boon, N., & de Belie, N. (2016). Application of microorganisms in concrete: a promising sustainable strategy to improve concrete durability. In Applied Microbiology and Biotechnology. https://doi.org/10.1007/s00253-016-7370-6
Wang, J., van Tittelboom, K., de Belie, N., & Verstraete, W. (2012). Use of silica gel or polyurethane immobilized bacteria for self-healing concrete. Construction and Building Materials. https://doi.org/10.1016/j.conbuildmat.2011.06.054
Wang, J. Y., Soens, H., Verstraete, W., & de Belie, N. (2014). Self-healing concrete by use of microencapsulated bacterial spores. Cement and Concrete Research. https://doi.org/10.1016/j.cemconres.2013.11.009
Wei, S., Cui, H., Jiang, Z., Liu, H., He, H., & Fang, N. (2015). Biomineralization processes of calcite induced by bacteria isolated from marine sediments. Brazilian Journal of Microbiology. https://doi.org/10.1590/S1517-838246220140533
Wiktor, V., & Jonkers, H. M. (2011). Quantification of crack-healing in novel bacteria-based self-healing concrete. Cement and Concrete Composites. https://doi.org/10.1016/j.cemconcomp.2011.03.012
Xiao, J. Z., Wei, Y. Q., Cai, H., Wang, Z. W., Yang, T., Wang, Q. H., & Wu, S. F. (2020). Microbial-Induced Carbonate Precipitation for Strengthening Soft Clay. Advances in Materials Science and Engineering. https://doi.org/10.1155/2020/8140724
Zhang, Z., Xie, Y., Xu, X., Pan, H., & Tang, R. (2012). Transformation of amorphous calcium carbonate into aragonite. Journal of Crystal Growth. https://doi.org/10.1016/j.jcrysgro.2012.01.025
Zulaika, E., Andry Prio Utomo, M., Alami, N. H., Prasetyo, E. N., Wulan, T., & Soegianto, A. (2020). New isolation of hydrocarbonoclastic bacteria from local limestone mining as promising concrete strength enhancer. Ecology, Environment and Conservation.
Zulaika, E., Prio Utomo, M. A., Hidayatul Alami, N., Dwianita Kuswytasari, N., Shovitri, M., Bayuaji, R., & Prasetyo, E. N. (2019). The diversity of ureolytic bacteria isolated from limestone in East Java, Indonesia based on amino acid sequences encoded by ureC. Biodiversitas. https://doi.org/10.13057/biodiv/d200829

Most read articles by the same author(s)

1 2 > >>