Level of urbanization and habitat type, and not patch size, influence predacious arthropod diversity patterns of urban grasslands in South Africa

##plugins.themes.bootstrap3.article.main##

BIANCA GREYVENSTEIN
MONIQUE BOTHA
JOHNNIE VAN DEN BERG
STEFAN J. SIEBERT

Abstract

Abstract. Greyvenstein B, Botha M, van den Berg J, Siebert SJ. 2021. Level of urbanization and habitat type, and not patch size, influence predacious arthropod diversity patterns of urban grasslands in South Africa. Biodiversitas 22: 4078-4094. Predacious arthropods provide a valuable ecosystem service within urban environments by suppressing pest numbers. However, urban ecological studies largely ignore this functional group and its diversity and species composition patterns. Some studies have been published regarding these patterns, however they were mostly done in Australia, Europe and America, thus an African perspective is lacking. Our aim was to address the gap in African literature by quantify the differences in predacious arthropod species richness and diversity within urban green space in varying urbanization intensities, habitat types of grassland and patch sizes in South Africa. Various indices were considered to examine the effect of urbanization on the diversity patterns of Chrysopidae (Neuroptera), Mantodea, Araneae and Coccinellidae (Coleoptera). Study sites included three levels of urbanization represented by population density, two types of urban grasslands (i.e., ruderal and fragmented grassland) and a peri-urban rangeland grassland as control, and a wide range of patch sizes. Our results indicated that an increase in urbanization intensities was associated with increased abundance of predacious arthropod taxa. Also, that urban and peri-urban grasslands had similar predacious arthropod species richness and diversity, but differed in species composition. No relationship was found between patch size and arthropod diversity or composition. Thus, predacious arthropod abundances are influenced by the level of urbanization and their species composition is influenced by the type of urban grassland (ruderal or fragmented), which are important considerations for future urban planning/management and conservation strategies. This study gives a South African perspective and indicates that despite the lack of assigned function of urban green spaces, they sustain diverse and distinct predacious arthropod communities, which in turn fulfill various roles in a functioning ecosystem.

##plugins.themes.bootstrap3.article.details##

References
Adams BJ, Li E, Bahlai CA, Meineke EK, McGlynn TP, Brown BV. 2020. Local and landscape-scale variables shape insect diversity in an urban biodiversity hot spot. Ecol. Appl. 30: 1-14. DOI: https://doi.org/10.1002/eap.2089
Alcamo J, Bennett EM. 2003. Ecosystems and human well-being: A framework for assessment. Island Press, Washington.
Argañaraz CI, Rubio GD, Gleiser RM. 2018. Spider communities in urban green patches and their relation to local and landscape traits. Biodivers. Conserv. 27: 981-1009. DOI: https://doi.org/10.1007/s10531-017-1476-8
Aronson MFJ, Nilon CH, Lepczyk CA, Parker TS, Warren PS, Cilliers SS, Goddard MA, Hahs KA, Herzog C, Katti M, La Sorte FA, Williams NSG, Zipperer W. 2016. Hierarchical filters determine community assembly of urban species pools. Ecology. 97: 2952-2963. DOI: https://doi.org/10.1002/ecy.1535
Blair RB. 2001. Birds and butterflies along urban gradients in two ecoregions of the United States: is urbanization creating a homogeneous fauna? In: Lockwood JL, Mckinney ML [Eds.], Biotic Homogenization. Kluwer Academic/Plenum, New York. 33-56 pp.
Blouin D, Pellerin S, Poulin M. 2019. Increase in non-native species richness leads to biotic homogenization in vacant lots of a highly urbanized landscape. Urban Ecosyst. 22: 879-892. DOIhttps://doi.org/10.1007/s11252-019-00863-9
Bolger DT, Suarez AV, Crooks KR, Morrison SA, Case TJ. 2000. Arthropods in urban habitat fragments in southern California: area, age and edge effect. Ecol. Appl. 10: 1230-1248. DOI: https://doi.org/10.1890/1051-0761(2000)010[1230:AIUHFI]2.0.CO;2
Botha M, Siebert SJ, Van den Berg J. 2016. Do arthropod assemblages fit the grassland and savanna biomes of South Africa? S. Afr. J. Sci. 112: 1-10. DOI: https://doi.org/10.17159/sajs.2016/20150424
Botha M, Siebert SJ, Van den Berg J. 2017. Grass abundance maintains positive plant–arthropod diversity relationships in maize fields and margins in South Africa. Agric. For. Entomol. 19: 154-162. DOI: https://doi.org/10.1111/afe.12195
Botha M, Siebert SJ, Van den Berg J, Ellis S, Greyvenstein B. 2018. Diversity patterns of selected predaceous arthropod groups in maize fields and margins in South African Highveld grassland. Agric. For. Entomol. 20: 461-475. DOI: https://doi.org/10.1111/afe.12277
Bragg P. 1996-2007. Mantis study group newsletters 1-27 (August 1996- October 2007). Available: http://mantodea.myspecies.info/dowload-back-issues-msg-newsletter. [Accessed 18 July 2015.]
Brooks SJ. 1994. A taxonomic review of the common green lacewing genus Chrysoperla (Neuroptera: Chrysopidae). Bull. Br. Nat. Hist. (Entmol.) 63: 137-210.
Buchholz S, Hannig K, Möller M, Schirmel J. 2018. Reducing management intensity and isolation as promising tools to enhance ground-dwelling arthropod diversity in urban grasslands. Urban Ecosyst. 21: 1139-1149. DOI: https://doi.org/10.1007/s11252-018-0786-2
Bullock JM, Aronson J, Newton AC, Pywell RF, Rey-Benayas JM. 2011. Restoration of ecosystem services and biodiversity: conflicts and opportunities. Trends Ecol. Evol. 26: 541-549. DOI: https://doi.org/10.1016/j.tree.2011.06.011
Burkman CE, Gardiner MM. 2014. Urban green space composition and landscape context influence natural enemy community composition and function. Biol. Control 75: 58-67. DOI: https://doi.org/10.1016/j.biocontrol.2014.02.015
Buschke FT, Seaman MT. 2011. Functional feeding groups as a taxonomic surrogate for a grassland arthropod assemblage. Afr. Invertebr. 52: 217-228. DOI: https://doi.org/10.5733/afin.052.0112
Cardoso P, Barton PS, Birkhofer K, Chichorro F, Deacon C, Fartmann T, et al. 2020. Scientists’ warning to humanity on insect extinctions. Biol. Conserv. 242: 1–13. DOI: https://doi.org/10.1016/j.biocon.2020.108426
Chowdhury S, Hesselberg T, Böhm M, Islam MR, Aich U. 2017. Butterfly diversity in a tropical urban habitat (Lepidoptera: Papilionoidea). Orient. Insects 51: 417-430. DOI: https://doi.org/10.1080/00305316.2017.1314230
Cilliers SS, Bredenkamp GJ. 1999. Ruderal and degraded natural vegetation on vacant lots in the Potchefstroom municipal area, North West province, South Africa. S. Afr. J. Bot. 65: 163-173. DOI: https://doi.org/10.1016/S0254-6299(15)30956-X
Cilliers SS, Williams NS, Barnard FJ. 2008. Patterns of exotic plant invasions in fragmented urban and rural grasslands across continents. Landsc. Ecol. 23: 1243-1256. DOI: https://doi.org/10.1007/s10980-008-9295-7
Cilliers SS, Siebert SJ, Du Toit MJ, Davoren E. 2017. Managing urban green spaces for biodiversity conservation: An African perspective. In: Ossola A, Niemela J [Eds.], Urban biodiversity: From research to practice. Routledge, Oxford. 167-185pp.
Clarke KR, Gorley RN. 2006. PRIMER v6: user manual/tutorial. PRIMER-E, Plymouth, West Hoe, U.K.
Corcos D, Cerretti P, Caruso V, Mei M, Falco M, Marini L. 2019. Impact of urbanization on predator and parasitoid insects at multiple spatial scales. PLoS ONE 14: 1-15. DOI: https://doi.org/10.1371/journal.pone.0214068
Dale AG, Frank SD. 2018. Urban plants and climate drive unique arthropod interactions with unpredictable consequences. Curr. 29: 27–33. DOI: https://doi.org/10.1016/j.cois.2018.06.001
Delgado de la Flor YA, Perry KI, Turo KJ, Parker DM, Thompson JL, Gardiner MM. 2020. Local and landscape-scale environmental filters drive the functional diversity and taxonomic composition of spiders across urban greenspaces. J. Appl. Ecol. 57:1570–1580. DOI: https://doi.org/r10.1111/1365-2664.13636
Dippenaar-Schoeman AS, Jocqué R. 1997. African spiders: An identification manual. ARC-Plant Protection Research Inst., Biosystematics Division, National Collection of Arachnida, Pretoria.
Du Toit MJ, Cilliers SS. 2011. Aspects influencing the selection of representative urbanization measures to quantify urban–rural gradients. Landsc. Ecol. 26: 169-181. DOI: https://doi.org/10.1007/s10980-010-9560-4
Lowe EC, Wilder SM, Hochuli DF. 2017. Life history of an urban-tolerant spider shows resilience to anthropogenic habitat disturbance. J. Urban Ecol. 3: 1-10. DOI: https://doi.org/10.1093/jue/jux004
Egerer M, Li K, Ong TWY. 2018a. Context matters: contrasting ladybird beetle responses to urban environments across two US regions. Sustainability 10: 1-17. DOI: https://doi.org/10.3390/su10061829
Egerer MH, Liere H, Bichier P, Philpott SM. 2018b. Cityscape quality and resource manipulation affect natural enemy biodiversity in and fidelity to urban agroecosystems. Landsc. Ecol. 33: 985-998. DOI: https://doi.org/10.1007/s10980-018-0645-9
Ellis EC, Antill EC, Kreft H. 2012. All is not loss: Plant biodiversity in the Anthropocene. PLoS ONE 7: 1-9. DOI: https://doi.org/10.1371/journal.pone.0030535
Ellis SM, Steyn HS. 2003. Practical significance (effect sizes) versus or in combination with statistical significance (p-values). SAIMS 12: 51-53. DOI: https://hdl.handle.net/10520/EJC69666
Evers CR, Wardropper CB, Branoff B, Granek EF, Hirsch SL, Link TE, Olivero-Lora S, Wilson C. 2018. The ecosystem services and biodiversity of novel ecosystems: A literature review. Glob. Ecol. Conserv. 13: 1-12. DOI: https://doi.org/10.1016/j.gecco.2017.e00362
Fenoglio MS, Rossetti MR, Videla M. 2020. Negative effects of urbanization on terrestrial arthropod communities: A meta-analysis. Global. Ecol. Biogeogr. 29: 1412–1429. DOI: https://doi.org/10.1111/geb.13107
Gardiner MM, Burkman CE, Prajzner SP. 2013. The value of urban vacant land to support arthropod biodiversity and ecosystem services. Environ. Entomol. 42: 1123-1136. DOI: https://doi.org/10.1603/EN12275
Gibbs H, Hochuli DF. 2002. Habitat fragmentation in an urban environment: large and small fragments support different arthropod assemblages. Biol. Conserv. 106: 91-100. DOI: https://doi.org/10.1016/S0006-3207(01)00232-4
Google Earth. 2015. Google Earth 4.0. Potchefstroom, Vanderbijlpark and Ventersdorp. Satellite data layer. Available: http://www.google.com/earth/index.html. [Accessed 29 July 2015.]
Greyvenstein B, Du Plessis H, Moulin N, Van den Berg J. 2020a. Distribution of Galepsus spp. in Southern Africa and life history of Galepsus lenticularis (Mantodea: Tarachodidae). Insects. 11: 1-17. DOI: https://doi.org/10.3390/insects11020119
Greyvenstein B, Siebert SJ, van den Berg J. 2020b. Effect of time of day on efficacy of sweep net sampling of arthropod predators in maize agro-ecosystems in the North West Province, South Africa. Afr. Entomol. DOI: https://doi.org/10.4001/003.028.0150
Hammer Ø, Harper DAT, Ryan PD. 2001. PAST: Paleontological statistics software package for education and data analysis. Paleontol. Electron. 4: 1-9.
Honek A, Dixon AFG, Soares AO, Skuhrovec J, Martinkova Z. 2017. Spatial and temporal changes in the abundance and composition of ladybird (Coleoptera: Coccinellidae) communities. Curr. Opin. Insect Sci. 20: 61-67. DOI: https://doi.org/10.1016/j.cois.2017.04.001
IBM. 2017. SPSS Statistics for Windows, Version 25.0. IBM Corp., Armonk, NY.
Janse Van Rensburg PD, Siebert SJ, Masehela T, Ellis S, Van den Berg J. 2020. Diversity patterns of plants and arthropods in soybean agro-ecosystems in the Grassland biome of South Africa. Biodiversitas 21: 5559-5570. DOI: https://doi.org/10.13057/biodiv/d211201
Jones EL, Leather SR. 2012. Invertebrates in urban areas: A review. Eur. J. Entomol 109: 463-478. DOI: https://doi.org/10.14411/eje.2012.060
Jung M, Hill SLL, Platts PJ, Marchant R, Siebert SJ, Fournier A, Munyekenye FB, Purvis A, Burgess ND, Newbold T. 2017. Local factors mediate the response of biodiversity to land use on two African mountains. Anim. Conserv. 20: 370-381. DOI: https://doi.org/10.1111/acv.12327
Kaltenbach AP. 1996. Unterlagen für eine Monographie der Mantodea des südlichen Afrika: 1. Artenbestand, geographische Verbreitung und Ausbreitungsgrenzen (Insecta: Mantodea). Ann. Nat. Hist. Mus. Wien. 98: 193-346.
Kaltenbach AP. 1998. Unterlagen für eine Monographie der Mantodea (Insecta) des südlichen Afrika: 2. Bestimmungstabellen für die höheren Taxa, Nachträge zum Artenbestand. Ann. Nat. Hist. Mus. Wien. 100: 19-59.
Kremen C, Merenlender AM. 2018. Landscapes that work for biodiversity and people. Science. 362: 1-9. DOI: https://doi.org/10.1126/science.aau6020
Koranyi D, Szigeti V, Mez?fi L, Kondorosy E, Markó V. 2021. Urbanization alters the abundance and composition of predator communities and leads to aphid outbreaks on urban trees. Urban Ecosyst. 24: 571–586. DOI: https://doi.org/10.1007/s11252-020-01061
Kozlov MV, Lanta V, Zverev V, Rainio K, Kunavin MA, Zvereva EL. 2017. Decreased losses of woody plant foliage to insects in large urban areas are explained by bird predation. Glob. Change Biol. 23: 4354-4364. DOI: https://doi.org/10.1111/gcb.13692
Kutschbach-Brohl L, Washburn BE, Berhardt GE, Chipman RB, Francoeur LC. 2010. Arthropods of a semi-natural grassland in an urban environment: the John F. Kennedy International Airport, New York. J. Insect Conserv. 14: 347-358. DOI: https://doi.org/10.1007/s10841-010-9264-8
Lowe EC, Threlfall CG, Wilder SM, Hochuli DF. 2018. Environmental drivers of spider community composition at multiple scales along an urban gradient. Biodivers. Conserv. 27: 829–852. DOI: https://doi.org/10.1007/s10531-017-1466-x
Mace GM, Norris K, Fitter AH. 2012. Biodiversity and ecosystem services: a multilayered relationship. Trends Ecol. Evol. 27: 19-26. DOI: https://doi.org/10.1016/j.tree.2011.08.006
Magura T, Lovei GL, Tothmeresz B. 2010. Does urbanization decrease diversity in ground beetle (Carabidae) assemblages? Glob. Ecol. Biogeogr. 19: 16-26. DOI: https://doi.org/10.1111/j.1466-8238.2009.00499.x
Mansell MW. 1997. The antlions of southern Africa (Neuroptera: Myrmeleontidae): genus Palparellus Navás, including extralimital species. Afr. Entomol. 4: 239-267. DOI: https://hdl.handle.net/10520/AJA10213589_208
Marques A, Martins IS, Kastner T et al. 2019. Increasing impacts of land use on biodiversity and carbon sequestration driven by population and economic growth. Nat. Ecol. Evol. 3: 628-637. DOI: https://doi.org/10.1038/s41559-019-0824-3
Mata L, Threlfall CG, Williams NSG, Hahs AK, Malipatil M, Stork NE, Livesley SJ. 2017. Conserving herbivorous and predatory insects in urban green spaces. ?Sci. Rep. 7: 1-12. DOI: https://doi.org/10.1038/srep40970
McIntyre NE, Rango J, Fagan WF, Faeth SH. 2001. Ground arthropod community structure in a heterogeneous urban environment. Landscape Urban Plan. 52: 257-274. DOI: https://doi.org/10.1016/S0169-2046(00)00122-5
McKinney ML. 2008. Effects of urbanization on species richness: a review of plants and animals. Urban Ecosys. 11: 161-176. DOI: https://doi.org/10.1007/s11252-007-0045-4
McMahon SM, Diez JM. 2007. Scales of association: Hierarchical linear models and the measurement of ecological systems. Ecol. Lett. 10: 437-452. DOI: https://doi.org/10.1111/j.1461-0248.2007.01036.x
Nagy DD, Magura T, Horváth R, Debnár Z, Tóthmérész B. 2018. Arthropod assemblages and functional responses along an urbanization gradient: A trait-based multi-taxa approach. Urban For. Urban Gree. 30: 157-168. DOI: https://doi.org/10.1016/j.ufug.2018.01.002
New TR. 2018. Promoting and developing insect conservation in Australia's urban environments. Austral Entomol. 57: 182-19. DOI: https://doi.org/10.1111/aen.12332
Peng MH, Hung YC, Liu KL et al. 2020. Landscape configuration and habitat complexity shape arthropod assemblage in urban parks. Sci. Rep. 10: 1-12. DOI: https://doi.org/10.1038/s41598-020-73121-0
Philpott SM, Bichier P. 2017. Local and landscape drivers of predation services in urban gardens. Ecol. Appl. 27: 966-976. DOI: https://doi.org/10.1002/eap.1500
Philpott SM, Lucatero A, Bichier P, Egerer MH, Jha S, Lin B, Liere H. 2020. Natural enemy–herbivore networks along local management and landscape gradients in urban agroecosystems. Ecol. Appl. 30: 1-12. DOI: https://doi.org/10.1002/eap.2201
Piano E, Souffreau C, Merckx T, Baardsen LF, Backeljau T, Bonte D, Brans KI, Cours M et al. 2019. Urbanization drives cross-taxon declines in abundance and diversity at multiple spatial scales. Glob. Change. Biol. 26:1-16. DOI: https://doi.org/10.1111/gcb.14934
Pryke JS, Samways MJ. 2009. Recovery of invertebrate diversity in a rehabilitated city landscape mosaic in the heart of a biodiversity hotspot. Landscape Urban Plan. 93: 54-62. DOI: https://doi.org/10.1016/j.landurbplan.2009.06.003
Rocha EA, Fellowes MDE. 2020. Urbanisation alters ecological interactions: Ant mutualists increase and specialist insect predators decrease on an urban gradient. Sci Rep 10: 1-8. DOI: https://doi.org/10.1038/s41598-020-62422-z
Rocha EA, Fellowes MDE. 2018. Does urbanization explain differences in interactions between an insect herbivore and its natural enemies and mutualists? Urban Ecosyst. 21: 405-417. DOI: https://doi.org/10.1007/s11252-017-0727-5
Rocha EA, Souza ENF, Bleakley LAD, Burley C, Mott JL, Rue-Glutting G, Fellowes MDE. 2018. Influence of urbanisation and garden plants on the diversity and abundance of aphids and their ladybird and hoverfly predators. Eur. J. Entomol. 115: 140-149. DOI: https://doi.org/10.14411/eje.2018.013
Sanchez-Bayo F, Wyckhuys KAG. 2019. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 232: 8-27. DOI: https://doi.org/10.1016/j.biocon.2019.01.020
Sattler T, Obrist MJ, Deulli P, Moretti M. 2011. Urban arthropod communities: Added value or just a blend of surrounding biodiversity? Landsc. Urban Plan. 103: 347-361. DOI: https://doi.org/10.1016/j.landurbplan.2011.08.008
Seago A, Giorgi JS, Li J, Slipinski A. 2011. Phylogeny, classification and evolution of ladybird beetles (Coleoptera: Coccinellidae) based on simultaneous analysis of molecular and morphological data. Mol. Phylogenet. Evol. 60:137-51. DOI: https://doi.org/10.1186/s12862-017-1002-3
Soga M, Kanno N, Yamaura Y, Koike S. 2013. Patch size determines the strength of edge effects on carabid beetle assemblages in urban remnant forests. J. Insect Conserv. 17: 421-428. DOI: https://doi.org/10.1007/s10841-012-9524-x
Threlfall CG, Walker K, Williams NS, Hahs AK, Mata L, Stork N, Livesley SJ. 2015. The conservation value of urban green space habitats for Australian native bee communities. Biol. Conserv. 187: 240-248. DOI: https://doi.org/10.1016/j.biocon.2015.05.003
Turrini T, Sanders D, Knop E. 2016. Effects of urbanization on direct and indirect interactions in a tri-trophic system. Ecol. Appl. 26: 664-675. DOI: https://doi.org/10.1890/14-1787
Van der Walt L, Cilliers SS, Kellner K, du Toit MJ, Tongway D. 2013. To what extent does urbanisation affect fragmented grassland functioning? J. Environ. Manag. 151: 517-530. DOI: https://doi.org/10.1016/j.jenvman.2014.11.034
Van der Walt L, Cilliers SS, du Toit MJ, Kellner K. 2015. Conservation of fragmented grasslands as part of the urban green infrastructure: how important are species diversity, functional diversity and landscape functionality? Urban Ecosyst.18: 87-113. DOI: https://doi.org/10.1007/s11252-014-0393-9
Venter AD, Vakkari V, Beukes JP, Van Zyl PG, Laakso H, Mabaso D, Tiitta P, Josipovic M, Kulmala M, Pienaar J. 2012. An air quality assessment in the industrialised western Bushveld Igneous Complex, South Africa. S. Afr. J. Sci. 108: 1-10. DOI: https://doi.org/10.4102/sajs.v108i9/10.1059
Wani AM, Sahoo G. 2021. Forest Ecosystem Services and Biodiversity. In: Shit PK, Pourghasemi HR, Das P, Bhunia GS. [Eds.], Spatial Modeling in Forest Resources Management. Environmental Science and Engineering. Springer, Switzerland. 529-552pp.
Wagner LS, Fenoglio MS, Salvo A. 2017. Alien species numerically dominate natural enemy communities in urban habitats: a preliminary study. J. Entomol. Res. Soc. 19: 31-42. DOI: https://www.entomol.org/journal/index.php/JERS/article/view/1058
Whitmore C, Crouch TE, Slotow RH. 2002. Conservation of biodiversity in urban environments: Invertebrates on structurally enhanced road islands. Afr. Entomol. 10: 113-126.

Most read articles by the same author(s)