Exploration of vitamin B12-producing bacteria from Indonesia Eutrophic Lake: A new strategy to improve microalgae biomass production

##plugins.themes.bootstrap3.article.main##

SITORESMI PRABANINGTYAS
TRI ARDYATI
SUHARJONO
CATUR RETNANINGDYAH

Abstract

Abstract. Prabaningtyas S, Ardyati T, Suharjono, Retnaningdyah C. 2021. Exploration of vitamin B12-producing bacteria from Indonesia Eutrophic Lake: A new strategy to improve microalgae biomass production. Biodiversitas 22: 4538-4544. Biofuel producing autotrophs and heterotrophs organisms are mostly found in freshwaters such as lakes. Preliminary research showed that Ranu Grati has a high diversity of microalgae and bacteria. Microalgae are known as one source of biofuels due to the high content of lipid. The growth of microalgae is strongly influenced by vitamin B12, which is synthesized by bacteria. The role of vitamin B12 in the metabolism of algae is mainly as a co-enzyme for vitamin B12-dependent methionine synthase. The purpose of this research was to observe the bacterial diversity based on NGS analysis, to explore vitamin B12 produced by bacteria from Ranu Grati lake, and also to identify the highest potency of vitamin B12-producing bacteria based on 16S rRNA gene sequencing. The study was carried out by taking a water sample at a depth of 50 cm at five stations. Isolation of total bacterial DNA was carried out using FastDNA Spin Kit for Soil. The metagenomic method of Next Generation Sequencing (NGS) was used as an initial study of bacterial diversity. Vitamin B12-producing bacteria was isolated using PYBG agar (phytone peptone, trypticase peptone, lab-lemco powder, bacto yeast extract, glucose, agar). Isolated bacteria were screened for production of vitamin B12. The potential isolates were identified base on 16S rRNA gene sequence similarity. The results of the metagenomic study showed that the genus of potential bacteria producing vitamin B12 included Bacillus, Pseudomonas, Propionibacterium, Enterobacter, Escherichia, Acinetobacter, and Flavobacterium. The results of screening with PYBG media obtained 30 isolates of vitamin B12 producing bacteria. Ten efficient vitamin B12-producing isolates were identified as Lysinibacillus fusiformis (isolate G2V1), Bacillus cereus group (isolate G2V25, G2V24, G2V13, G2V9, G2V8), Alcaligenes faecalis (isolate G2V22), Delftia acidovorans (isolate G2V14A) and the genus Delftia (isolate G2V19). The isolate G2V1 (Lysinibacillus fusiformis) was the highest producer of vitamin B12 which was able to produce 33,783 ug/mL of vitamin B12 at 4 days incubation time.

##plugins.themes.bootstrap3.article.details##

References
Aryantha INP, Lestari DP. 2004. The potency of IAA producing bacteria isolates on promotion the growth of mungbean sprout in hydroponic conditions. Jurnal Mikrobiologi Indonesia 9 (2): 43-46. [Indonesian]
Amini S, Susilowati R. 2010. Produksi biodiesel dari mikroalga
Botryococcus brauni. Jurnal Squalen 5 (1): 23-32. [Indonesian] Benson. 2001. Microbiological Application. McGraw Hill Publisher, New
York.
Bickford D, Lohman DJ, Sodhi NS, Ng PK, Meier R, Winker K, Das I. 2007. Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22 (3): 148-155.
Bergey DH, Boone DR. 2009. Bergey's Manual of Systematic Bacteriology, Vol. 3, 2nd ed. Springer Science-Business Media, New York.
Bagwell CE, Piskorska M, Soule T, Petelos A, Yeager CM. 2014. A Diverse Assemblage of Indole-3-Acetic Acid Producing Bacteria associate with unicellular green algae. Appl Biochem Biotechnol 173 (8): 1977-1984.
Bukin YS, Galachyants YP, Morozov IV, Bukin SV, Zakharenko AS, Zemskaya TI. 2019. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci Data 6: 190007. DOI: 10.1038/sdata.2019.7.
Carroll A, Somerville C. 2009. Cellulosic Biofuels. Ann Rev Plant Biol 60: 165-182.
Cappuccino JG, Sherman N. 2014. Microbiology, A Laboratory Manual.
th ed. Pearson Education, Inc., United States of America.
de-Bashan LE, Antoun H, Bashan Y. 2016. Involvement of Indole-3- Acetic-Acid produced by the growth-promoting bacterium Azospirillum spp. in promoting growth of Chlorella vulgaris. J Phycol 44 (4): 938-947.
Gordon SA, Weber RP. 1951. Colorimetric estimation of indoleacetic acid. Plant Physiol 26 (1): 192.
Gravel V, Antoun H, Tweddell RJ. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with
Pseudomonas putida or Trichoderma atroviride: Possible role of Indole Acetic Acid (IAA). Soil Biol Biochem 39 (8): 1968-1977. DOI: 10.1016/j.soilbio.2007.02.015.
Jegathese SJP, Farid M. 2014. Microalgae as a renewable source of energy: A niche opportunity. J Renew Energ 2014. DOI: 10.1155/2014/430203.
Jusoh M, Loh SH, Chuah TS, Aziz A, San Cha T. 2015. Indole-3-Acetic Acid (IAA) induced changes in oil content, fatty acid profiles and expression of four fatty acid biosynthetic genes in Chlorella vulgaris at early stationary growth phase. Phytochemistry 111: 65-71. DOI: 10/1016/j.phytochem.2014.12.022.
Johnson JS, Spakowicz DJ, Hong BY, Petersen LM, Demkowicz P, Chen L, Leopold SR, Hanson BM, Agresta HO, Gerstein M, Sodergren E, Weinstock GM. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat Commun 10 (1): 1- 11. DOI: 10.1038/s41467-019-13036-1.
Koga J, Adachi T, Hidaka H. 1991. IAA biosynthetic pathway from tryptophan via indole-3-pyruvic acid in Enterobacter cloacae. Agric Biol Chem 55: 701-706.
Kresnawaty I, Andanawarih S. 2008. Optimisasi dan pemurnian IAA yang dihasilkan Rhizobium sp. dalam medium serum lateks dengan suplementasi triptofan dari pupuk kandang. Menara Perkebunan 76 (2): 74-82. [Indonesian]
Khairani G. 2009. Isolasi dan uji kemampuan bakteri endofit penghasil hormon IAA (Indole Acetic Acid) dari akar tanaman jagung (Zea mays L.). [Hon. Thesis]. Departemen Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam, Universitas Sumatera Utara, Medan. [Indonesian]
Kawaroe M. 2015. Bioenergi dari Alga Laut. IPB Press, Bogor. [Indonesian]
Khan AL, Halo BA, Elyassi A, Ali S, Al-Hosni K, Hussain J, Al-Harrasi A, Jung L. 2016. Indole acetic acid and ACC deamination from endophytic bacteria improve the growth of Solanum lycopersicum. Electron J Biotechnol 58-64. DOI: 10.1016/j.ejbt.2016.02.001
Li Y, Horsman M, Wu N, Lan CQ, Dubois-Calero N. 2008. Biofuels from Microalgae. Biotechnol Prog 24 (4): 815-820. DOI: 10.1021/bp070371.
Lwin KM, Myint MM, Tar T, Aung WZM. 2012. Isolation of plant hormone (indole-3-acetic acid-IAA) producing rhizobacteria and study on their effects on maize seedling. Eng J 16 (5): 137-144.
Lestariani N. 2014. Analisis status trofik Ranu Grati, Pasuruan dan pengembangannya sebagai modul perkuliahan limnologi. [Disertation]. Program Pascasarjana, Universitas Negeri Malang, Malang. [Indonesian]
Larasati ED, Rukmi MI, Kusdiyantini E, Ginting RCB. 2018. Isolasi dan identifikasi bakteri pelarut fosfat dari tanah gambut. Bioma: Berkala Ilmiah Biologi 20 (1): 1-8. [Indonesian]
Mohite B. 2013. Isolation and characterization of Indole Acetic Acid (IAA) producing bacteria from rhizospheric soil and its effect on plant growth. J Soil Sci Plant Nutr. DOI: 10.4067/S0718- 95162013005000051.
Meza B, de-Bashan LE, Bashan Y. 2015. Involvement of Indole-3-Acetic Acid produced by Azospirillum brasilense in accumulating intracellular ammonium in Chlorella vulgaris. Res Microbiol 166 (2): 72-83.
Miranda AF, Ramkumar N, Andriotis C, Höltkemeier T, Yasmin A, Rochfort S, Lal B. 2017. Applications of microalgal biofilms for wastewater treatment and bioenergy production. Biotechnol Biofuels 10 (1): 120.
Mike-Anosike EE, Braide W, Adeleye SA. 2018. Studies on indole acetic acid (IAA) production by rhizobacteria and growth-promoting potentials. Intl J Adv Res Biol Sci 5 (2): 133-140.
Nghia NK, Tien TTM, Oanh NTK, Nuong NHK. 2017. Isolation and characterization of indole acetic acid-producing halophilic bacteria from salt affected soil of Rice-Shrimp farming system in the Mekong Delta, Vietnam. For Fish 6 (3): 69-77.
Nhu VTP, Diep CN. 2017. Isolation and characterization of endophytic bacteria in soybean (Glycine max L. (Merrill) cultivated on alluvial soil of Can Tho city, Vietnam. Intl J Innov Eng Technol 8 (3): 208- 221. DOI: 10.21172/ijiet.83.028.
Pattern CL, Glick BR. 2002. Role of Pseudomonas putida Indole Acetic Acid in development of the plant root system. Appl Environ Microbiol Res 160: 127-133.
Palacios OA, Lopez BR, Bashan Y, de-Bashan LE. 2019. Early changes in nutritional conditions affect formation of synthetic mutualism between Chlorella sorokiniana and the bacterium Azospirillum
brasilense. Microbial Ecol 77 (4): 980-992. DOI: 10.1007/s00248-
-1282-1.
Pardi F, Gascuel O. 2016. Distance-based methods in phylogenetics. In: Kliman RM (ed.). Encyclopedia of Evolutionary Biology. Elsevier, Nederlands.
Prabaningtyas S, Witjoro A, Suarsini E, Aridowi D, Nafizatuzamrudah ANA, Purnomo A, Permana YI. 2018. Vertical distribution of bacteria in various lakes of East Java, Indonesia. J Physics Conf Ser (1): 012017. DOI: :10.1088/1742-6596/1093/1/012017.
Prabaningtyas S, Witjoro A, Aridowi D, Aribah D, Basithoh YK. 2017. Co-culture mikroalga Chlorella sp. dan bakteri (penghasil IAA dan pelarut fosfat), prospek industri mikroalga masa depan. [Laporan Penelitian]. Jurusan Biologi, Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Malang, Malang. [Indonesian]
Prihanto AA, Ardiansyah RF, Pradarameswari KA. 2019. Identifikasi molekuler bakteri endofit penghasil L-asparaginase yang diisolasi dari mangrove buta-buta (Excoecaria agallocha). Jurnal Pascapanen dan
Bioteknologi Kelautan dan Perikanan 14 (1): 29-34. [Indonesian]
Saitou N, Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4 (4): 406-425.
Schutz A, Golbik R, Tittmann K, Svergun DI, Koch MH, Hubner G, Konig S. 2003. Studies on structure-function relationships of indole pyruvate decarboxylase from Enterobacter cloacae, an enzyme involved in the biosynthesis of the plant hormone Indole-3-Acetic Acid. Eur J Biochem 270 (10): 2322-2331. DOI: 10.1046/j.1432- 1033.2003.03602.x.
Spaepen S, Vanderleyden J, Remans R. 2007. Indole-3-acetic acid in microbial and microorganism-plant signaling. J FEMS Microbiol Rev 31 (4): 425-448. DOI: 10.1111/j.1574-6976.2007.00072.x.
Spaepen S, Vanderleyden J. 2011. Auxin and plant-microbe interactions.
Cold Spring Harbor Perspect Biol 3 (4): a001438.
Sharfina S. 2013. Struktur Komunitas Fitoplankton di Perairan Ranu Pani Kecamatan Senduro, Kabupaten Lumajang. [Hon. Thesis]. Jurusan Biologi Fakultas MIPA UM, Malang. [Indonesian]
Sukmadi RB. 2013. Aktivitas Fitohormon Indole-3-Acetic Acid (IAA) dari bebarapa isolat bakteri rhizosfer dan endofit. J Sains dan Teknologi Indon 14 (3): 221-227. DOI: 10.29122/jsti.v14i3.930. [Indonesian]
Sinaga ELR, Muhtadi A, Bakti D. 2016. Profil suhu, oksigen terlarut, dan pH secara vertikal selama 24 jam di Danau Kelapa Gading Kabupaten Asahan Sumatera Utara. Omni-Akuatika 12 (2). DOI: 10.20884/1.oa.2016.12.2.107. [Indonesian]
Shaik I, Janakiram P, Sujatha L, Chandra S. 2016. Isolation and identification of IAA producing endosymbiotic bacteria from Gracillaria corticata (J. Agardh). Intl J Bioassays 5 (12): 5179. DOI: 10.21746/ijbio.2016.12.0012.
Sa’adah AF, Fauzi A, Juanda B. 2017. Peramalan Penyediaan dan Konsumsi Bahan Bakar Minyak Indonesia dengan Model Sistem Dinamik. Jurnal Ekonomi Dan Pembangunan Indonesia, 17(2), 118- 137 https://doi.org/10.21002/jepi.v17i2.661.
Susilowati DN, Riyanti EI, Setyowati M, Mulya K. 2018. Indole-3-acetic acid-producing bacteria and its application on the growth of rice. AIP Conf Proc 2002 (1): 020016. DOI: 10.1063/1.5050112.
Sivaramakrishnan R, Incharoensakdi A. 2020. Plant hormone-induced enrichment of Chlorella sp. Omega-3 fatty Acids. Biotechnol Biofuels 13: 7. DOI: 10.1186/s13068-019-1647-9.
Sophia V, Kim L, Ariane G, Dinkelacker, Baris B, Ingo BA, Silke P, Jan
L. 2019. Fourier-Transform Infrared (FTIR) Spectroscopy for typing of clinical Enterobacter cloacae complex isolates.
Front Microbiol 10: 2582. DOI: 10.3389/fmicb.2019.02582.
Tandon P, Jin Q, Huang L. 2017. A promising approach to enhance microalgae productivity by exogenous supply of vitamins. Microbial Cell Factories 16 (1): 1-13. DOI: 10.1186/s12934-017-0834-2.
Udayan A, Kathiresan S, Arumugam M. 2018. Kinetin and Gibberellic acid (GA3) act synergistically to produce high value polyunsaturated fatty acids in Nannochloropsis oceanica CASA CC201. Algal Res 32: 182-192.
Vogt S, Löffler K, Dinkelacker AG, Bader B, Autenrieth I, Peter SM, Liese J. 2019. Fourier-transform infrared (FTIR) spectroscopy for typing of clinical Enterobacter cloacae complex isolates. Front Microbiol 10: 2582. DOI: 10.3389/fmicb.2019.02582.
Widodo L, Ihsan IM, Santoso AD. 2018. Profitabilitas biodiesel dari biomasa mikroalga. Jurnal Teknologi Lingkungan 19 (1): 117-124. [Indonesian]
Zhao Y. 2010. Auxin biosynthesis and its role in plant development. Ann Rev Plant Biol 61: 49-64.

Most read articles by the same author(s)

<< < 1 2