Analysis of genetic variability in F2 interspecific hybrids of mung bean (Vigna radiata) using inter-retrotransposon amplified polymorphism marker system

##plugins.themes.bootstrap3.article.main##

YENI FATMAWATI
AGUS BUDI SETIAWAN
AZIZ PURWANTORO
DYAH WENY RESPATIE
CHEE HOW TEO

Abstract

Abstract. Fatmawati Y, Setiawan AB, Purwantoro A, Respatie DW, Teo CH. 2021. Analysis of genetic variability in F2 interspecific hybrids of mung bean (Vigna radiata) using inter-retrotransposon amplified polymorphism marker system. Biodiversitas 22: 4880-4889. Mung bean (Vigna radiata L. Wilczek) categorized as one of the pivotal annual crops of Vigna genera is commonly cultivated in rotation with the cereal crops during the drought season. Conversely, to ameliorate its stunted productivity, the interspecific hybridization technique has been introduced between the mung bean and the common bean to promote genetic improvement with the breeding projects in Indonesia. However, since mung bean is a self-pollinated crop and has a narrow genetic base, the selection and improvement of a specific trait using marker-assisted selection is more challenging. Hence, a precautionary investigation is imperative to evaluate the progenies resulting from interspecific hybridization using an ideal marker. This study aimed to investigate the genetic variability of the F2 population of the interspecific mung bean hybrids using retrotransposon-based markers, particularly Inter-Retrotransposon Amplified Polymorphism (IRAP) markers. In this study, we identified retrotransposon from the mung bean genome and determined the Long Terminal Repeat (LTR) sequence using the LTR Finder. The IRAP primers were designed from a conserved region of the LTR sequence. One hundred of the F2 interspecific hybrids generated from the crossing between mung bean and common bean were successfully discriminated by IRAP markers. The IRAP marker showed high heterozygosity and moderate Polymorphic Information Content (PIC) values. The IRAP markers were able to detect genetic variability in the F2 progenies resulting from the interspecific hybridization. Cluster analysis showed that 100 of the F2 progenies were grouped into three clusters. This study demonstrated that retrotransposon-based markers can offer an effective approach for evaluating the segregation in the F2 population of intercross hybrids in the mung bean.

##plugins.themes.bootstrap3.article.details##

References
Alikhani L, Rahmani M-S, Shabanian N, Badakhshan H, Khadivi-Khub A. 2014. Genetic variability and structure of Quercus brantii assessed by ISSR, IRAP and SCoT markers. Gene. 552:176-183. DOI:10.1016/j.gene.2014.09.034.
Amiryousefi A, Hyvönen J, Poczai P. 2018. iMEC: Online marker efficiency calculator. Appl Plant Sci. 6: 4-7. DOI:10.1002/aps3.1159.
Basirnia A, Darvishzadeh R, Abdollahi Mandoulakani B. 2016. Retrotransposon insertional polymorphism in sunflower (Helianthus annuus L.) lines revealed by IRAP and REMAP markers. Plant Biosyst. 150:641-652. DOI:10.1080/11263504.2014.970595.
Botstein D, White RL, Skolnick M, Davis RW. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet. 32:314-331.
Casacuberta JM, Santiago N. 2003. Plant LTR-retrotransposons and MITEs: Control of transposition and impact on the evolution of plant genes and genomes. Gene. 311:1–11. DOI:10.1016/S0378-1119(03)00557-2.
Cheraghi A, Rahmani F, Hassanzadeh-Ghorttapeh A. 2018. IRAP and REMAP based genetic diversity among varieties of Lallemantia iberica. Mol Biol Res Commun. 7:125-132. DOI:10.22099/mbrc.2018.29924.1327.
Chesnokov Y V, Artemyeva AM. 2015. Evaluation of the measure of polymorphism information of genetic diversity. Agric Biol. 50:571-578. DOI:10.15389/agrobiology.2015.5.571rus.
Elbarbary RA, Lucas BA, Maquat LE. 2016. Retrotransposons as regulators of gene expression. Science. 351:1-18. DOI:10.1126/science.aac7247.
Eltaher S, Sallam A, Belamkar V, Emara HA, Nower AA, Salem KFM, Poland J, Baenziger PS. 2018. Genetic diversity and population structure of F3:6 Nebraska Winter wheat genotypes using genotyping-by-sequencing. Front Genet. 9:1-9. DOI:10.3389/fgene.2018.00076.
Fukuhara S, Muakrong N, Kikuchi S, Tanya P, Sassa H, Koba T, Srinives P. 2016. Cytological characterization of an interspecific hybrid in Jatropha and its progeny reveals preferential uniparental chromosome transmission and interspecific translocation. Breed Sci. 66:838-844. DOI:10.1270/jsbbs.16069.
Gayacharan, Archak S, Gupta K, Gupta V, Tyagi V, Singh K. 2020. Mungbean genetic resources and utilization. In: Nair RM, Schafleitner R, Lee S-H (Eds). The Mungbean Genome. Springer International Publishing, Cham.
Goulet BE, Roda F, Hopkins R. 2017. Hybridization in plants: Old ideas, new techniques. Plant Physiol. 173:65-78. DOI:10.1104/pp.16.01340.
Guo Y, Zhai L, Long H, Chen N, Gao C, Ding Z, Jin B. 2018. Genetic diversity of Bletilla striata assessed by SCoT and IRAP markers. Hereditas. 155:35. DOI:10.1186/s41065-018-0074-4.
Hall TA. 1999. BioEdit: A user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symp Ser. 41:95-98.
Hou D, Yousaf L, Xue Y, Hu J, Wu J, Hu X, Feng N, Shen Q. 2019. Mung bean (Vigna radiata L.): Bioactive polyphenols, polysaccharides, peptides, and health benefits. Nutrients. 11:1–28. DOI:10.3390/nu11061238.
Huang Y, Luo L, Hu X, Yu F, Yang Y, Deng Z, Wu J, Chen R, Zhang M. 2017. Characterization, genomic organization, abundance, and chromosomal distribution of Ty1-copia retrotransposons in Erianthus arundinaceus. Front Plant Sci. 8:1-11. DOI:10.3389/fpls.2017.00924.
Isemura T, Kaga A, Tomooka N, Shimizu T, Vaughan DA. 2010. The genetics of domestication of rice bean, Vigna umbellata. Ann Bot. 106:927-944. DOI:10.1093/aob/mcq188.
Kalendar R, Khassenov B, Ramankulov Y, Samuilova O, Ivanov KI. 2017. FastPCR: An in silico tool for fast primer and probe design and advanced sequence analysis. Genomics. 109:312–319. DOI:10.1016/j.ygeno.2017.05.005.
Kalendar R, Schulman AH. 2006. IRAP and REMAP for retrotransposon-based genotyping and fingerprinting. Nat Protoc. 1:2478-2484. DOI:10.1038/nprot.2006.377.
Kalendar R, Schulman AH. 2014. Transposon-Based Tagging: IRAP, REMAP, and iPBS. In: Besse P (Ed). Molecular Plant Taxonomy. Vol. 1115. Humana Press, Totowa.
Kang YJ, Kim SK, Kim MY, Lestari P, Kim KH, Ha BK, Jun TH, Hwang WJ, Lee T, Lee J, et al. 2014. Genome sequence of mungbean and insights into evolution within Vigna species. Nat Commun. 5. DOI:10.1038/ncomms6443.
Kikuchi S, Kino H, Tanaka H, Tsujimoto H. 2007. Pollen Tube Growth in Cross Combinations between Torenia fournieri and Fourteen Related Species. Breed Sci. 57:117-122. DOI:10.1270/jsbbs.57.117.
Kim H, Terakami S, Nishitani C, Kurita K, Kanamori H, Katayose Y, Sawamura Y, Saito T, Yamamoto T. 2012. Development of cultivar-specific DNA markers based on retrotransposon-based insertional polymorphism in Japanese pear. Breed Sci. 62:53-62. DOI:10.1270/jsbbs.62.53.
Kim SK, Nair RM, Lee J, Lee SH. 2015. Genomic resources in mungbean for future breeding programs. Front Plant Sci. 6:1-12. DOI:10.3389/fpls.2015.00626.
Konovalov FA, Goncharov NP, Goryunova S, Shaturova A, Proshlyakova T, Kudryavtsev A. 2010. Molecular markers based on LTR retrotransposons BARE-1 and Jeli uncover different strata of evolutionary relationships in diploid wheats. Mol Genet Genomics. 283:551-563. DOI:10.1007/s00438-010-0539-2.
Li S, Ramakrishnan M, Vinod KK, Kalendar R, Yrjälä K, Zhou M. 2020. Development and deployment of high-throughput retrotransposon-based markers reveal genetic diversity and population structure of asian bamboo. Forests. 11:1-25. DOI:10.3390/f11010031.
Liang Y, Lenz RR, Dai W. 2016. Development of retrotransposon-based molecular markers and their application in genetic mapping in chokecherry (Prunus virginiana L.). Mol Breed. 36. DOI:10.1007/s11032-016-0535-2.
Lu S, Wang J, Chitsaz F, Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Marchler GH, Song JS, et al. 2020. CDD/SPARCLE: The conserved domain database in 2020. Nucleic Acids Res. 48:D265–D268. DOI:10.1093/nar/gkz991.
Ma P, Xu H, Han G, Luo Q, Xu Y, Zhang X, An D, Li L, Sun Y. 2016. Characterization of a segregation distortion locus with powdery mildew resistance in a Wheat-Thinopyrum intermedium introgression line WE99. Plant Dis. 100:1541-1547. DOI:10.1094/PDIS-11-15-1352-RE.
Mirani AA, Teo CH, Markhand GS, Abul-Soad AA, Harikrishna JA. 2020. Detection of somaclonal variations in tissue cultured date palm (Phoenix dactylifera L.) using transposable element-based markers. Plant Cell Tissue Organ Cult. 141:119–130. DOI:10.1007/s11240-020-01772-y.
Mogali SC, Hegde GM. 2020. Recent advances in mungbean breeding: A perspective. In: Gosal SS, Wani SH (Eds). Accelerated Plant Breeding, Volume 3. Springer International Publishing, Cham.
Moghaddam SM, Song Q, Mamidi S, Schmutz J, Lee R, Cregan P, Osorno JM, McClean PE. 2014. Developing market class specific InDel markers from next generation sequence data in Phaseolus vulgaris L. Front Plant Sci. 5:1-13. DOI:10.3389/fpls.2014.00185.
Monden Y, Hara T, Okada Y, Jahana O, Kobayashi A, Tabuchi H, Onaga S, Tahara M. 2015. Construction of a linkage map based on retrotransposon insertion polymorphisms in sweetpotato via high-throughput sequencing. Breed Sci. 65:145-153. DOI:10.1270/jsbbs.65.145.
Nair R, Schreinemachers P. 2020. Global status and economic importance of mungbean. In: Nair RM, Schafleitner R, Lee SH (Eds). The Mungbean Genome. Springer International Publishing, Cham.
Nei M, Li W-H. 1979. Mathematical model for studying genetic variation in terms of restriction endonucleases. Proc Natl Acad Sci. 76:5269-5273.
Orozco-Arias S, Isaza G, Guyot R. 2019. Retrotransposons in plant genomes: Structure, identification, and classification through bioinformatics and machine learning. Int J Mol Sci. 20:3837. DOI:10.3390/ijms20153837.
Peakall R, Smouse PE. 2012. GenALEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research-an update. Bioinformatics. 28:2537-2539. DOI:10.1093/bioinformatics/bts460.
Pratap A, Prajapati U, Singh CM, Gupta S, Rathore M, Malviya N, Tomar R, Gupta AK, Tripathi S, Singh NP. 2018. Potential, constraints and applications of in vitro methods in improving grain legumes. Plant Breed. 137:235-249. doi:10.1111/pbr.12590.
Rashid K, Othman RY, Ali BSBKS, Yusof YM, Nezhadahmadi A. 2014. The application of irap markers in the breeding of papaya (Carica Papaya L.). Indian J Sci Technol. 7:1720-1728.
Reflinur, Kim B, Jang SM, Chu SH, Bordiya Y, Akter MB, Lee J, Chin JH, Koh HJ. 2014. Analysis of segregation distortion and its relationship to hybrid barriers in rice. Rice. 7:1-12. DOI:10.1186/s12284-014-0003-8.
Rey-Baños R, Sáenz De Miera LE, García P, De La Vega MP. 2017. Obtaining retrotransposon sequences, analysis of their genomic distribution and use of retrotransposon-derived genetic markers in lentil (Lens culinaris Medik.). PLoS One. 12:1-20. DOI:10.1371/journal.pone.0176728.
Rohlf FJ. 2009. NTSYSpc. Numerical taxonomy and multivariate analysis: version 2.2. Exeter Software Setauket, New York.
Sanchez DH, Gaubert H, Drost HG, Zabet NR, Paszkowski J. 2017. High-frequency recombination between members of an LTR retrotransposon family during transposition bursts. Nat Commun. 8:1-6. DOI:10.1038/s41467-017-01374-x.
Schulman AH, Flavell AJ, Paux E, Ellis THN. 2012. The application of LTR retrotransposons as molecular markers in plants. In: Bigot Y (Ed). Mobile Genetics Element: Protocols and Genomic Applications, Method in Molecular Biology. Vol. 21. Humana Press, London.
Setiawan Agus B., Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. 2020. Chromosomal Locations of a Non-LTR Retrotransposon, Menolird18, in Cucumis melo and Cucumis sativus, and Its Implication on Genome Evolution of Cucumis Species. Cytogenet Genome Res. 160:554-564. DOI:10.1159/000511119.
Setiawan Agus Budi, Teo CH, Kikuchi S, Sassa H, Kato K, Koba T. 2020. Centromeres of Cucumis melo L. comprise Cmcent and two novel repeats, CmSat162 and CmSat189. PLoS One. 15:e0227578. DOI:10.1371/journal.pone.0227578.
Sharma V, Nandineni MR. 2014. Assessment of genetic diversity among Indian potato (Solanum tuberosum L.) collection using microsatellite and retrotransposon based marker systems. Mol Phylogenet Evol. 73:10-17. DOI:10.1016/j.ympev.2014.01.003.
Shehzad M, Zhou Z, Ditta A, Khan M, Cai X, Xu Y, Maqbool A, Khalofah A, Shaban M, Naeem M, et al. 2021. Identification and characterization of genes related to salt stress tolerance within segregation distortion regions of genetic map in F2population of upland cotton. PLoS One. 16:1-30. DOI:10.1371/journal.pone.0247593.
Sormin SYM, Purwantoro A, Setiawan AB, Teo CH. 2021. Application of inter-SINE amplified polymorphism (ISAP) markers for genotyping of Cucumis melo accessions and its transferability in Coleus spp. Biodiversitas J Biol Divers. 22:2918-2929. DOI:10.13057/biodiv/d220557.
Toyomoto D, Uemura M, Taura S, Sato T, Henry R, Ishikawa R, Ichitani K. 2019. Segregation distortion observed in the progeny of crosses between Oryza sativa and O. meridionalis caused by abortion during seed development. Plants. 8. DOI:10.3390/plants8100398.
Vuorinen AL, Kalendar R, Fahima T, Korpelainen H, Nevo E, Schulman AH. 2018. Retrotransposon-based genetic diversity assessment in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Agronomy. 8:1-13. DOI:10.3390/agronomy8070107.
Wang L, Bai P, Yuan X, Chen H, Wang S, Chen X, Cheng X. 2018. Genetic diversity assessment of a set of introduced mung bean accessions (Vigna radiata L.). Crop J. 6:207-213. DOI:10.1016/j.cj.2017.08.004.
Xu Z, Wang H. 2007. LTR-FINDER: An efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 35:265-268. DOI:10.1093/nar/gkm286.
Yu X, Zhai Y, Wang P, Cheng C, Li J, Lou Q, Chen J. 2021. Morphological, anatomical and photosynthetic consequences of artificial allopolyploidization in Cucumis. Euphytica. 217. DOI:10.1007/s10681-020-02735-2.
Zein I, Jawhar M, Arabi MIE. 2010. Efficiency of IRAP and ITS-RFLP marker systems in accessing genetic variation of Pyrenophora graminea. Genet Mol Biol. 33:328-332. DOI:10.1590/S1415-47572010005000041.
Zhang X, Liu T, Li X, Duan M, Wang J, Qiu Y, Wang H, Song J, Shen D. 2016. Interspecific hybridization, polyploidization, and backcross of Brassica oleracea var. alboglabra with B. rapa var. purpurea morphologically recapitulate the evolution of Brassica vegetables. Sci Rep. 6:1-14. DOI:10.1038/srep18618.
Zhao D, Ferguson AA, Jiang N. 2016. What makes up plant genomes: The vanishing line between transposable elements and genes. Biochim Biophys Acta - Gene Regul Mech. 1859:366-380. DOI:10.1016/j.bbagrm.2015.12.005.

Most read articles by the same author(s)

1 2 > >>