Habitat preferences of wild orchids in Bantimurung Bulusaraung National Park to model their suitable habitat in South Sulawesi, Indonesia

##plugins.themes.bootstrap3.article.main##

EKA MARTHA DELLA RAHAYU
SAFRAN YUSRI
https://orcid.org/0000-0001-5939-6087

Abstract

Abstract. Rahayu EMD, Yusri S. 2021. Habitat preferences of wild orchids in Bantimurung Bulusaraung National Park to model their suitable habitat in South Sulawesi, Indonesia. Biodiversitas 23: 43-54. Wild orchids are mainly threatened by habitat degradation and over-exploitation. Orchid conservation requires information regarding its distribution and suitable habitat, and factors affecting it. This study aimed to investigate the distribution and habitat preferences of orchids in Bantimurung Bulusaraung National Park, Sulawesi, Indonesia, and to predict the habitat suitability map of orchids in South Sulawesi, Indonesia. The survey was conducted in Bantimurung Bulusaraung National Park to collect data on orchid occurrences along with microhabitat characteristics (altitude, light, temperature, substrate thickness, and vertical distribution). ERGo Datasets Landforms and Physiography, SRTM elevation, NDVI derived from LANDSAT 8 OLI were used in Google Earth Engine to obtain macrohabitat data. Microhabitat preference of environmental data was averaged for each variable and further explored with Canonical Correlation Analysis. Suitable habitat was modeled with Maxent using occurrences and environmental data. The survey found 26 epiphytic orchid species and 22 phorophyte species. Orchids were found at an altitude from 514 m to 933 m above sea level. Altitude is the most discriminant factor in determining orchids’ distribution in the study area. The Maxent analysis showed that the suitable habitat of orchids comprises of 3,554.952 km2 area which is mainly located in lowland rainforest with high topographic diversity, preferably warm slope, and ridges. Since lower slope and lowland areas are not protected, community-based conservation such as social forestry can become one of the alternative solutions for in situ conservation of orchids. For ex-situ conservation, integrated orchid conservation in botanic gardens should be prioritized.

##plugins.themes.bootstrap3.article.details##

References
Adhikari YP, Fischer A, Fischer HS, Rokaya MB, Bhattarai P, Gruppe A. 2017. Diversity, composition and host-species relationships of epiphytic orchids and ferns in two forests in Nepal. Journal of Mountain Science 14(6): 1065-1075. DOI: 10.1007/s11629-016-4194-x.
Amaral S, Costa CB, Rennó CD. 2007. Normalized Difference Vegetation Index (NDVI) improving species distribution models: An example with the neotropical genus Coccocypselum (Rubiaceae). Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, Brasil, 21-26 April 2007, INPE, p. 2275-2282.
Annaselvam J, Parthasarathy N. 2001. Diversity and distribution of herbaceous vascular epiphytes in a tropical evergreen forest at Varagalaiar, Western Ghats, India. Biodiversity and Conservation 10: 317-329.
Baldwin, R.A. 2009. Use of Maximum Entropy Modeling in Wildlife Research. Entropy 11: 854-866. https://doi.org/10.3390/e11040854.
Berg CC, Corner EJH, Noteboom HP. 2005. Flora Malesiana Series I Seed Plants. Volume 17, Part 2: Moraceae (Ficus). Nationaal Herbarium Nederland Leiden Netherlands, Leiden.
Cao B, Bai C, Zhang L, Li G, Mao M. 2016. Modeling habitat distribution of Cornus officinalis with Maxent modeling and fuzzy logics in China. Journal of Plant Ecology 9(6): 742-751. https://doi.org/10.1093/jpe/rtw009.
Chase MW. 2005. Classification of Orchidaceae in the Age of DNA data. Curtis's Botanical Magazine 22(1): 2-7. DOI:10.1111/j.1355-4905.2005.00466.x.
Chavez P, Ruokolainen K, Tuomisto H. 2018. Using remote sensing to model tree species distribution in Peruvian lowland Amazonia. Biotropica. DOI:10.1111/btp.12597.
Christenhusz MJM, Byng JW. 2016. The number of known plants species in the world and its annual increase. Phytotaxa 261(3): 201-217.
Comber JB. 1990. Orchids of Java. Bentham-moxon Trust. Royal Botanic Garden, Kew.
Comber JB. 2001. Orchids of Sumatra. The Royal Botanic Gardens, Kew.
Cribb PJ, Kell SP, Dixon KW, Barrett RL. 2003. Orchid conservation: A global perspective. In: Orchid conservation. Natural History Publications, Kota Kinabalu, pp. 1–24.
De LC, Pathak P, Rao AN, Rajeevan PK. 2014. Commercial Orchids. De Gruyter Open Ltd., Warsaw/Berlin.
Deb JC, Phinn S, Butt N, McAlpine CA. 2017. The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecology and Evolution 7: 2238-2248.
Ding Y, Liu G, Zang R, Zhang J, Lu X, Huang J. 2016. Distribution of vascular epiphytes along a tropical elevational gradient: Disentangling abiotic and biotic determinants. Scientific Reports 6: 19706. DOI: 10.1038/srep19706.
Dressler RL. 1993. Phylogeny and Classification of the Orchid Family. Cambridge University Press, Cambridge.
Elith J, Graham CH, Anderson RP, Dudík M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y., Overton JMM, Peterson AT, Phillips SJ, Richardson KS, Scachetti-Pereira R, Schapire RE, Soberón, J, Williams S, Wisz MS, Zimmermann NE. 2006. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29: 129-151.
Evans I. 1980. An integrated system of terrain analysis and slope mapping. Zeitschrift fur Geomorphologie. Suppl-Bd -36: 274-295.
Farr TG, Rosen PA, Caro E, Crippen R, Duren R, Hensley S, Kobrick M, Paller M, Rodriguez E, Roth L, Seal D, Shaffer S, Shimada J, Umland J, Werner M, Oskin M, Burbank D, Alsdorf D. 2007. The shuttle radar topography mission. Reviews of Geophysics 45, RG2004: 1-33. DOI: 10.1029/2005RG000183.
Gale SW, Kumar P, Hinsley A, Cheuk ML, Gao J, Liu H, Liu ZL, Williams SJ. 2019. Quantifying the trade in wild-collected ornamental orchids in South China: Diversity, volume and value gradients underscore the primacy of supply. Biological Conservation 238: 108204. https://doi.org/10.1016/j.biocon.2019.108204.
GBIF. 2021. GBIF Backbone Taxonomy. Checklist dataset. https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-03-30.
GEE Developer. 2018a. Hillshade. https://code.earthengine.google.com/861e7b0fb100aeae8303b05513ed7dab accessed February 25th, 2018.
GEE Developer. 2018b. Landsat 8 Surface Reflectance Cloud Free Mosaic. https://code.earthengine.google.com/5b390da132d5244564fd8bc50cdd628b accessed February 25th, 2018.
Geiger DL, Kocyan A. 2018. Studies on Oberonia 3. Aberrant flowers and other floral modifications in the orchid genus Oberonia. Nordic Journal of Botany: e01699. DOI: 10.1111/njb.01699.
Geiger DL. 2019. Studies on Oberonia 5 (Orchidaceae: Malaxideae). Twenty-four new synonyms, and a corrected spelling. Blumea 64: 123-139.
Global Forest Watch. 2021b. Sulawesi Selatan, Dashboard. https://globalforestwatch.org/dashboards/country/IDN/26/?category=summary&dashboardPrompts=eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJvbXB0c1ZpZXdlZCI6WyJkb3dubG9hZERhc2hib2FyZFN0YXRzIiwiZGFzaGJvYXJkQW5hbHlzZXMiLCJzaGFyZVdpZGdldCJdLCJzZXR0aW5ncyI6eyJzaG93UHJvbXB0cyI6dHJ1ZSwicHJvbXB0c1ZpZXdlZCI6WyJkb3dubG9hZERhc2hib2FyZFN0YXRzIiwiZGFzaGJvYXJkQW5hbHlzZXMiXSwic2V0dGluZ3MiOnsic2hvd1Byb21wdHMiOnRydWUsInByb21wdHNWaWV3ZWQiOlsiZG93bmxvYWREYXNoYm9hcmRTdGF0cyIsImRhc2hib2FyZEFuYWx5c2VzIl0sInNldHRpbmdzIjp7InNob3dQcm9tcHRzIjp0cnVlLCJwcm9tcHRzVmlld2VkIjpbImRvd25sb2FkRGFzaGJvYXJkU3RhdHMiXSwic2V0dGluZ3MiOnsib3BlbiI6ZmFsc2UsInN0ZXBJbmRleCI6MCwic3RlcHNLZXkiOiIifSwib3BlbiI6dHJ1ZSwic3RlcHNLZXkiOiJkYXNoYm9hcmRBbmFseXNlcyJ9LCJzdGVwc0tleSI6ImRhc2hib2FyZEFuYWx5c2VzIiwic3RlcEluZGV4IjowLCJvcGVuIjpmYWxzZSwiZm9yY2UiOnRydWV9LCJvcGVuIjp0cnVlLCJzdGVwSW5kZXgiOjAsInN0ZXBzS2V5Ijoic2hhcmVXaWRnZXQifSwic3RlcHNLZXkiOiJzaGFyZVdpZGdldCIsImZvcmNlIjp0cnVlfQ%3D%3D&location=WyJjb3VudHJ5IiwiSUROIiwiMjYiXQ%3D%3D&map=eyJjZW50ZXIiOnsibGF0IjotNC43MjMxNDAyOTkyOTMxOTU1LCJsbmciOjExOS41MDg3OTk5OTk5NjU5OX0sInpvb20iOjYuMDQ1NzUzMDQ0NDcwODE2LCJjYW5Cb3VuZCI6ZmFsc2UsImRhdGFzZXRzIjpbeyJvcGFjaXR5IjowLjcsInZpc2liaWxpdHkiOnRydWUsImRhdGFzZXQiOiJwcmltYXJ5LWZvcmVzdHMiLCJsYXllcnMiOlsicHJpbWFyeS1mb3Jlc3RzLTIwMDEiXX0seyJkYXRhc2V0IjoicG9saXRpY2FsLWJvdW5kYXJpZXMiLCJsYXllcnMiOlsiZGlzcHV0ZWQtcG9saXRpY2FsLWJvdW5kYXJpZXMiLCJwb2xpdGljYWwtYm91bmRhcmllcyJdLCJib3VuZGFyeSI6dHJ1ZSwib3BhY2l0eSI6MSwidmlzaWJpbGl0eSI6dHJ1ZX0seyJkYXRhc2V0IjoidHJlZS1jb3Zlci1sb3NzIiwibGF5ZXJzIjpbInRyZWUtY292ZXItbG9zcyJdLCJvcGFjaXR5IjoxLCJ2aXNpYmlsaXR5Ijp0cnVlLCJ0aW1lbGluZVBhcmFtcyI6eyJzdGFydERhdGUiOiIyMDAyLTAxLTAxIiwiZW5kRGF0ZSI6IjIwMjAtMTItMzEiLCJ0cmltRW5kRGF0ZSI6IjIwMjAtMTItMzEifSwicGFyYW1zIjp7InRocmVzaG9sZCI6MzAsInZpc2liaWxpdHkiOnRydWV9fV19&treeLossPct=eyJoaWdobGlnaHRlZCI6ZmFsc2V9 . Accessed on 2021-10-02.
Gorelick N, Hancher M, Dixon M, Ilyushchenko S, Thau D, Moore R. 2017. Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment 202: 18-27.
Gravendeel B, Smithson A, Slik FJW, Schuiteman A. 2004. Epiphytism and pollinator specialization: drivers for orchid diversity? Philosophical Transactions of the Royal Society B 359: 1523-1535.
Handoyo F. 2010. Orchids of Indonesia. Vol.1. Indonesian Orchid Society, Jakarta.
Handoyo F, Prasetya R. 2012. Orchids of Sulawesi. Perhimpunan Anggrek Indonesia, Jakarta.
Hansen, MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG. 2013. High-resolution global maps of 21st-century forest cover change. Science 342: 850-53.
Hendrayana Y, Supartono T, Adhya I, Ismail AY, Kosasih D. 2021. Distribution and association of Ficus spp in the shrubs area of Gunung Ciremai National Park Indonesia. IOP Conf. Series: Earth and Environmental Science 819 (2021) 012078. DOI:10.1088/1755-1315/819/1/012078.
Hernández-Pérez E, Solano E, Ríos-Gómez R. 2018. Host affinity and vertical distribution of epiphytic orchids in a montane cloud forest in southern Mexico. Botanical Sciences 96(2): 200-217. DOI: 10.17129/botsci.1869.
Hijmans RJ, Cameron SE, Parra JI, Jones PG, Jarvis A. 2005. Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology 25: 1965-1978. DOI: 10.1002/joc.1276.
Hinsley A, De Boer HJ, Fay MF, Gale SW, Gardiner LM, Gunasekara RS, Kumar P, Masters S, Metusala D, Roberts DL, Veldman S, Wong S, Phelps J. 2018. A review of the trade in orchids and its implications for conservation. Botanical Journal of the Linnean Society186: 435-455.
Hiola SF, Dirawan GD, Caronge MW. 2015. The diversity of wild orchids in epiphytic Mallawa Resort Area of Bantimurung Bulusaraung National Park, South Sulawesi, Indonesia. Journal of Tropical Crop Science 2(2): 28-33.
Hosmer DW, Lemeshow S. 2000. Applied Logistic Regression, 2nd Ed. John Wiley and Sons, New York.
Huda MK, Wilcock CC. 2011. Colonisation and diversity of epiphytic orchids on trees in disturbed and undisturbed forests in the Asian tropics. Gardens’ Bulletin Singapore 63(1 & 2): 341-356.
Jalal JS. 2019. Diversity and distribution of orchids of Goa, Western Ghats, India. Journal of Threatened Taxa 11(15): 15015-15042.
Jalal JS, Singh P. 2017. Ecological niche modelling for conservation of Habenaria suaveolens Dalzell, an endangered orchid species endemic to Western Ghats: A case study. J. Orchid Soc. India 31: 77-83.
Johansson D. 1974. Ecology of vascular epiphytes in West African rain forest. Acta Phytogeographica Suecica 59: 1-136.
Leitão PJ, Santos MJ. 2019. Improving models of species ecological niches: A remote sensing overview. Frontier Ecology Evolution 7: 9. DOI: 10.3389/fevo.2019.00009.
Li J, Gale SW, Kumar P, Zhang J, Fischer GA. 2018. Prioritizing the orchids of a biodiversity hotspot for conservation based on phylogenetic history and extinction risk. Bot. J. Linn. Soc. 186: 473-497.
Martinis A, Chaideftou E, Minotou C, Poirazidis K. 2018. Spatial analysis of orchids diversity unveils hot-spots: The case of Zante Island, Greece. Journal of Agricultural Informatics 9(1): 26-40.
Merow C, Smith MJ, Silander JA. 2013. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 36: 1058–1069. DOI: 10.1111/j.1600-0587.2013.07872.x.
Ministry of Environment and Forestry. 2019. Social Forestry Indicative Map. Ministry of Environment and Forestry, Jakarta.
MyBIS. 2021. Magnolia montana. Malaysia Biodiversity Information System (MyBIS). https://www.mybis.gov.my/sp/27496. Accessed on 09 August 2021.
Nirwana S, Hiola F, Karim H. 2018. Analysis of epiphytic orchid vegetation in Tompobulu Resort Balocci Village Bantimurung Bulusaraung National Park Pangkep Regency. Prosiding Seminar Nasional Biologi dan Pembelajarannya: 347-352. [Indonesian].
Nurfadillah S. 2015. Diversity Of Epiphytic Orchids And Host Trees (Phorophytes) In Secondary Forest Of Coban Trisula, Malang Regency, East Java, Indonesia. BIOTROPIA Vol. 22 No. 2, 2015: 120 - 128
O’Byrne P. 2001. A to Z of Southeast Asian Orchid Species. 1st ed. Orchids Society of South East Asia, Singapore.
Park SY, Murthy HN, Paek KY. 2000. In-vitro seed germination of Calanthe sieboldii, an endangered orchid species. J Plant Biol 43: 158-161.
Phillips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecological Modelling 190: 231-259.
Phillips SJ, Dudík M. 2008. Modeling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31: 161-175. DOI: 10.1111/j.2007.0906-7590.05203.x.
Phillips SJ. 2017. A brief tutorial on Maxent. Available from url: http://biodiversityinformatics.amnh.org/open_source/maxent/.
POWO. 2021. Plants of the World Online. Facilitated by the Royal Botanic Gardens, Kew. Published on the Internet; http://www.plantsoftheworldonline.org/ Retrieved June 7, 2021.
Raes N. 2012. Partial versus full species distribution models. Natureza & Conservação 10(2): 127-138.
Rahayu EMD. 2018. Konservasi ex situ anggrek di Kebun Raya Jompie, Parepare, Sulawesi Selatan. Pros. Sem. Nas. Masy. Biodiv. Indon. Vol 4(2): 242 – 247. [Indonesian].
Rahayu EMD, Putri WU. 2019. Orchids’ biodiversity and vertical distribution of epiphytic orchids in Bantimurung Bulusaraung National Park. Buletin Kebun Raya 22(2): 131-142. [Indonesian].
Rahayu EMD. in press. Review of the conservation efforts of orchid species in Bogor Botanic Gardens. Proceeding of the 23rd World Orchid Conference.
Rahbek C. 1995. The elevational gradient of species richness: A uniform pattern? Ecography 18(2): 200-205.
Rasmussen HN, Rasmussen FN. The epiphytic habitat on a living host: reflections on the orchid–tree relationship. Botanical Journal of the Linnean Society 186(4): 456-472.
Redon M, Luque S. 2010. Presence-only modelling for indicator species distribution: Biodiversity monitoring in the French Alps. 6th Spatial Analysis and Geomatics international conference (SAGEO 2010), Nov 2010, Toulouse, France. P.42-55.
Reina-Rodríguez GA, Mejía JER, Llanos FAC, Soriano I. 2017. Orchid distribution and bioclimatic niches as a strategy to climate change in areas of tropical dry forest in Colombia. Lankesteriana 17(1): 17-47.
Rijal S, Barkey RA, Nasri, Nursaputra M. 2019a. Profile, level of vulnerability and spatial pattern of deforestation in Sulawesi period of 1990 to 2018. Forest 10(191). DOI: 10.3390/f10020191.
Rijal S, Nismayanti, Mahbub MAS, Pachri H, Nurmiaty, Arif S. 2019b. Spatial modelling of deforestation based on social driving force in South Sulawesi. IOP Conf. Series: Earth and Environmental Science. DOI: 10.1088/1755-1315/280/1/012027.
Risna RA, Kusuma YWC, Widyatmoko D, R. Hendirian, Pribadi DO. 2010. Spesies Prioritas untuk Konservasi Tumbuhan Indonesia Seri I: Arecaceae, Cyatheaceae, Nepenthaceae, Orchidaceae. LIPI Press.
Rouse JW, Haas RH, Schell JA, Deering DW. 1974. Monitoring vegetation systems in the Great Plains with ERTS. In: Freden SC, Mercanti EP, Becker M (eds) Third Earth Resources Technology Satellite–1 Syposium. Volume I: Technical Presentations, NASA SP-351. NASA, Washington D.C.: 309-317.
Sodjinou K, Radji RA, QUashie MA, Adjossou K, Abotsi KE, Kokou K. Ecological characterization of epiphytes orchids in the meridional zone of Mount Togo. J. Hortic. 6(1). DOI: 10.4172/2376-0354.1000252.
Štípková, Z, Romportl D, ?ernocká V, Kindlmann P. 2017. Factors associated with the distributions of orchids in the Jeseníky Mountains, Czech Republic. European Journal of Environmental Sciences 7(2): 135-145. https://doi.org/10.14712/23361964.2017.13.
Swarts ND, Dixon KW. 2009. Perspectives on orchid conservation in botanic gardens. Trends in Plant Science 14(11): 590-598.
Theobald DM, Harrison-Atlas D, Monahan WB, Albano CM. 2015. Ecologically-relevant maps of landforms and physiographic diversity for climate adaptation planning. PLoS ONE 10(12): e0143619. DOI:10.1371/journal.pone.0143619.
Thomas S, Schuiteman S. 2002. Orchids of Sulawesi and Maluku: A preliminary catalogue. Lindleyana 17(1): 1-72.
Timsina B, Kindlmann P, Subedi S, Khatri S, Rokaya MB. 2021. Epiphytic orchid diversity along an altitudinal gradient in Central Nepal. Plants 10: 1381. https:// doi.org/10.3390/plants10071381.
Timsina B, Rokaya MB, Münzbergová Z, Kindlmann P, Shrestha B, Bhattarai B, Raskoti BB. 2016. Diversity, distribution and host-species associations of epiphytic orchids in Nepal. Biodiversity and Conservation 25: 2803-2819. DOI 10.1007/s10531-016-1205-8.
Tittensor DP, Baco AR, Brewin PE, Clark ML, Consalvey M, Hall-Spencer J, Rowden AA, Schlacher T, Stocks KI, Rogers AD. 2009. Predicting global habitat suitability for stony corals on seamounts. Journal of Biogeography 36: 1111-1128.
Trimanto, Danarto SA. 2020. Diversity of epiphytic orchids, Hoya, Dischidia and phorophytes (host trees) in Bawean Island Nature Reserve and Wildlife Reserve, East Java, Indonesia. Journal of Tropical Biodiversity and Biotechnology 5(2): 78-88. DOI: 10.22146/jtbb.53795.
Trivedi MR, Berry PM, Morecroft MD, Dawson TP. 2008. Spatial scale affects bioclimate model projections of climate change impacts on mountain plants. Global Change Biology 14(5): 1089-1103. DOI: 10.1111/j.1365-2486.2008.01553.x.
Tropical Plants Database. 2021. Ken Fern. tropical.theferns.info. 2021-08-09. . Accessed on 2021-08-09.
Tsiftsis S, Tsiripidis I, Trigas P. 2011. Identifying important areas for orchid conservation in Crete. European Journal of Environmental Sciences 1(2): 28-37.
Wang WC, Lo NJ, Chang WI, Huang KY. 2012. Modeling spatial distribution of a rare and endangered plant species (Brainea insignis) in Central Taiwan. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XXXIX-B7. XXII ISPRS Congress, 25 August – 01 September 2012, Melbourne, Australia.
Wang HH, Wonkka CL, Treglia ML, Grant WE, Smeins FE, Rogers WE. 2015. Species distribution modelling for conservation of an endangered endemic orchid. AoB PLANTS 7: plv039; DOI:10.1093/aobpla/plv039.
Yulia ND, Budiharta S. 2011. Epiphytic orchids and host trees diversity at Gunung Manyutan Forest Reserve, Wilis Mountain, Ponorogo, East Java. Biodiversitas. 12(1): 22-27.
Yusri S. 2019. Spatial Modelling Of Scleractinian Coral Distribution In Indonesia. [Thesis]. Bogor Agricultural University, Bogor.
Yusri S, Siregar VP, Suharsono. 2019. Distribution modelling of Porites (Poritidae) in Indonesia. IOP Conf. Ser.: Earth Environ. Sci. 363 012025.
Yusuf R. 2011. Sebaran ekologi dan keanekaragaman Ficus spp. di Indonesia. Berkala Penelitian Hayati Edisi Khusus 5A: 83-91.
Zhang S, Yang Y, Li J, Qin J, Zhang W, Huang W, Hu H. 2018. Physiological diversity of orchids. Plant Diversity 40: 196-208.
Zhang SB, Chen WY, Huang JL, Bi YF, Yang XF. 2015. Orchid species richness along elevational and environmental gradients in Yunnan, China. PLoS ONE 10(11): e0142621. DOI:10.1371/ journal.pone.0142621.
Zhao M, Geekiyanage N, Xu J, Khin MM, Nurdiana DR, Paudel E, Harrison RD. 2015. Structure of the epiphyte community in a tropical montane forest in SW China. PLoS ONE 10(4): e0122210. DOI:10.1371/ journal.pone.0122210.
Zotarelli HGS, Molina JMP, Ribeiro JELS, Sofia SH. 2019. A commensal network of epiphytic orchids and host trees in an Atlantic Forest remnant: A case study revealing the important role of large trees in the network structure. Austral Ecology 44(1): 114-125. DOI:10.1111/aec.12659.