Anti-bacteria and toxicity potential of a rare Actinobacterium Pseudonocardia sp. SM1A, isolated from Mangrove Park, West Kalimantan, Indonesia

##plugins.themes.bootstrap3.article.main##

RISA NOFIANI
RIZKY
RIDHO BRILIANTORO
PUJI ARDININGSIH

Abstract

Abstract. Nofiani R, Rizky, Briliantoro R, Ardiningsih P. 2021. Anti-bacteria and toxicity potential of a rare Actinobacterium Pseudonocardia sp. SM1A, isolated from Mangrove Park, West Kalimantan, Indonesia. Biodiversitas 23: 453-458. This study aimed to identify and evaluate antibacterial and toxicity activities of a rare Actinobacterium isolated from mangrove mud, Mempawah District, West Kalimantan. The mangrove mud sample was inoculated on ISP4 agar dissolved with seawater enriched meropenem (75µg/mL) and nystatin (100 µg/mL) using pour plate procedure and incubated at room temperature until the appearance powdery colony. One of the 2 powdery colonies successfully isolated was SM1A. SM1A was morphologically and biochemically identified to determine its genus and tested antibacterial activities using the cross streak method. SM1A also was cultivated and shaken at room temperature. After 10 days, the culture was extracted using ethyl acetate and then the extract was tested antibacterial activities using a well diffusion method and toxicity using brine shrimp lethality test (BSLT). SM1A was identified as Pseudonocardia sp., then was called Pseudonocardia sp. SM1A. Pseudonocardia sp. SM1A tested anti-bacteria using the cross streak method showed active against Staphylococcus aureus, Salmonella typhi, Escherichia coli, Pseudomonas aeruginosa, Vibrio cholera, and Streptococcus mutants for the ISP4 agar medium and S. typhi, S. mutants, and V. cholera for the ISP1. Pseudonocardia sp. SM1A extract prepared from ISP1 broth medium was active against S. typhi, E. coli, V. cholera, and Streptococcus mutants. In addition, Pseudonocardia sp. SM1A extract cultivated on ISP1 broth medium showed LC50=11.2570 µg/mL based on the BSLT and categorized as moderately toxic level. Pseudonocardia sp. SM1A contained secondary metabolites having high potential as lead compounds for drug discovery.

##plugins.themes.bootstrap3.article.details##

References
Al-Ansari, M., Kalaiyarasi, M., Almalki, M. A., & Vijayaraghavan, P. (2020). Optimization of medium components for the production of antimicrobial and anticancer secondary metabolites from Streptomyces sp. AS11 isolated from the marine environment. Journal of King Saud University - Science, 32(3), 1993–1998.
Benhadj, M., Gacemi-Kirane, D., Menasria, T., Guebla, K., & Ahmane, Z. (2019). Screening of rare actinomycetes isolated from natural wetland ecosystem (Fetzara Lake, northeastern Algeria) for hydrolytic enzymes and antimicrobial activities. Journal of King Saud University - Science, 31(4), 706–712.
Ding, L., Münch, J., Goerls, H., Maier, A., Fiebig, H. H., Lin, W. H., & Hertweck, C. (2010). Xiamycin, a pentacyclic indolosesquiterpene with selective anti-HIV activity from a bacterial mangrove endophyte. Bioorganic and Medicinal Chemistry Letters, 20(22), 6685–6687.
El-Banna, N. M. (2005). Effect of carbon source on the antimicrobial activity of the air flora. World Journal of Microbiology and Biotechnology, 21, 1451–1454.
Holt, J. G., Krieg, N. ., Sneath, P. H. ., Staley, J. ., & Williams, S. . (1994). Bergey’s Manual of Determinative Bacteriology (9th ed.).
Jafari, N., Behroozi, R., Farajzadeh, D., Farsi, M., & Akbari-Noghabi, K. (2014). Antibacterial activity of Pseudonocardia sp. JB05, a rare salty soil actinomycete against Staphylococcus aureus. BioMed Research International, 2014.
Kumar, P. S., Duraipandiyan, V., & Ignacimuthu, S. (2014). Isolation, screening and partial purification of antimicrobial antibiotics from soil Streptomyces sp. SCA 7. Kaohsiung Journal of Medical Sciences, 30(9), 435–446.
Lee, S. B., Strand, S. E., David Stensel, H., & Herwig, R. P. (2004). Pseudonocardia chloroethenivorans sp. nov., a chloroethene-degrading actinomycete. International Journal of Systematic and Evolutionary Microbiology, 54(1),
Li, Q., Chen, X., Jiang, Y., & Jiang, C. (2016). Cultural, Physiological, and Biochemical Identification of Actinobacteria. Actinobacteria - Basics and Biotechnological Applications.
Low, A. L. M., Mohamad, S. A. S., & Abdullah, M. F. F. (2015). Taxonomic diversity and antimicrobial activities of actinomycetes from manure composts. Research Journal of Microbiology, 10(11), 513–522.
Meena, D. K., Sahoo, A. K., Swain, H. S., Borah, S., Srivastava, P. P., Sahu, N. P., & Das, B. K. (2020). Prospects and perspectives of virtual in-vitro toxicity studies on herbal extracts of Terminalia arjuna with enhanced stratagem in Artemia salina model: A panacea to explicit the credence of solvent system in brine shrimp lethality bioassay. Emirates Journal of Food and Agriculture, 32(1), 25–37.
Meyer, B. N., Ferrigni, N. A., Putnam, J. E., Jacobsen, L. B., Nichols, D. E., & Mclaughlin, J. L. (1982). Brine shrimp?: A convenient general bioassay for Active plant constituents. Journal of Medicinal Plant Research, 45, 31–34.
Murniasih, T., & Bayu, A. (2015). Carbon source optimization for antibiotic production from Aaptos-associated bacteria Rhodobacteracea bacterium SP.2.11. Marine Research in Indonesia, 40(2), 79–84.
Nofiani, R., Weisberg, A. J., Tsunoda, T., Panjaitan, R. G. P., Brilliantoro, R., Chang, J. H., Philmus, B., & Mahmud, T. (2020). Anti-bacterial potential of secondary metabolites from Indonesian marine bacterial symbionts. International Journal of Microbiology, 2020.
Omeke, J. N., Anaga, A. O., & Okoye, J. A. (2018). Brine shrimp lethality and acute toxicity tests of different hydro-methanol extracts of Anacardium occidentale using in vitro and in vivo models: a preliminary study. Comparative Clinical Pathology, 27(6), 1717–1721.
Palaniappan, S., Panchanathan, M., Packiyaraj, V., Kannan, S., Shanmugam, S., Subramaniam, P., Viswanathan, M., Shanmugam, V., & Balasubramanian, T. (2013). Anti-bacterial and brine shrimp lethality effect of marine actinobacterium Streptomyces sp. CAS72 against human pathogenic bacteria. Asian Pacific Journal of Tropical Disease, 3(4), 286–293.
Prasith, K., Shobha, K., & Onkarappa, R. (2010). Pancreatic lipase Inhibitory and cytotoxic potential of a Streptomyces species isolated from Western Ghat soil, Agumbe, Karnataka, India. Enzyme, 15(December 2013), 16.
Rahayu, S., Fitri, L., & Ismail, Y. S. (2019). Short communication: Endophytic actinobacteria isolated from ginger (Zingiber officinale) and its potential as a pancreatic lipase inhibitor and its toxicity. Biodiversitas, 20(5), 1312–1317.
Rhee, K. Y., & Gardiner, D. F. (2004). Clinical relevance of bacteriostatic versus bactericidal activity in the treatment of gram-positive bacterial infections [2]. Clinical Infectious Diseases, 39(5), 755–756.
Salim, F. M., Sharmili, S. A., Anbumalarmathi, J., & Umamaheswari, K. (2017). Isolation, molecular characterization and identification of antibiotic producing actinomycetes from soil samples. Journal of Applied Pharmaceutical Science, 7(9), 69–75.
Tabaraie, B., Ghasemian, E., Tabaraie, T., Parvizi, E., & Rezazarandi, M. (2012). Comparative Evalution of Cephalosporin-C Production in Solid. Journal of Microbiology, Biotechnology, and Food Sciences, 2(1), 83–94.
Tanamatayarat, P. (2016). Antityrosinase, antioxidative activities, and brine shrimp lethality of ethanolic extracts from Protium serratum (Wall. ex Colebr.) Engl. Asian Pacific Journal of Tropical Biomedicine, 6(12), 1050–1055.
Ullah, M. O., Haque, M., Urmi, K. F., Abu, A. H., Anita, E. S., Begum, M., & Hamid, K. (2013). Anti-bacterial activity and brine shrimp lethality bioassay of methanolic extracts of fourteen different edible vegetables from Bangladesh. Asian Pacific Journal of Tropical Biomedicine, 3(1), 1–7.
Xu, D. B., Ye, W. W., Han, Y., Deng, Z. X., & Hong, K. (2014). Natural products from mangrove actinomycetes. Marine Drugs, 12(5), 2590–2613.