Isolation and identification of potential host probiotic bacteria from Malaysian mahseer, Tor tambroides for aquaculture practices

##plugins.themes.bootstrap3.article.main##

MOHAMMOD KAMRUZZAMAN HOSSAIN
SHUMPEI IEHATA
NOORDIYANA MAT NOORDIN
MD. ABDUL KADER
SHARIFAH NOOR EMILIA
YEONG YIK SUNG
AMBOK BOLONG ABOL-MUNAFI

Abstract

Abstract. Hossain MK, Iehata S , Noordin NM, Kader MA, Emilia SN, Sung YY, Abol-Munafi AB. 2022. Isolation and identification of potential host probiotic bacteria from Malaysian mahseer, Tor tambroides for aquaculture practices. Biodiversitas 23: 5423-5430. The digestive tract has been revealed as a reservoir of potential probiotics derived from the host. The goal of this study was to isolate, identify, and characterize putative host-associated probiotic bacteria (HAPs) from the digestive tract of Malaysian mahseer Tor tambroides. To evaluate potential T. tambroides HAPs, in-vitro digestive enzyme activity (such as a cellulolytic, proteolytic, and lipolytic activity) and antibacterial activity against two fish pathogens (Vibrio parahaemolyticus and Aeromonas hydrophila) were utilized. Thirty-seven isolates with digestive enzyme activities were tested for their ability to inhibit pathogenic bacteria growth using an agar well-diffusion assay. Three isolates displayed in-vitro suppression of pathogenic bacteria, with two strains (KT03 and KM07) inhibiting the growth of V. parahaemolyticus and one strain (KT27) suppressing the proliferation of both harmful bacteria (V. parahaemolyticus and A. hydrophila). Strains KT03 and KM07 exhibited the most resemblance to Enterococcus faecalis (strains 2674 and FC11682, respectively) based on 16S rRNA sequences, whereas KT27 had a 97% similarity to Aeromonas sp. A8-29. The study’s findings provide valuable data on the prospective use of these three isolates (KT03, KT27, and KM07) as potential HAPs for better understanding their physiological activities, such as growth and disease resistance on T. tambroides.

##plugins.themes.bootstrap3.article.details##

References
Abdelkhalek NKM, Eissa IAM, Ahmed E, Kilany OE, El-Adl M, Dawood MAO, Abdel-Daim MM. 2017. Protective role of dietary Spirulina platensis against diazinon-induced Oxidative damage in Nile tilapia; Oreochromis niloticus. Environ Toxicol Pharmacol 54:99-104. https://doi.org/10.1016/j.etap.2017.07.002
Abomughaid MM. 2020. Isolation and Identification of Some Probiotic Bacteria and Their Potential Role in Improving Immune Response and Resistance of Nile Tilapia (Oreochromis niloticus) in Comparison with a Commercial Product. Int J Microbiol 2020:1-9. https://doi.org/10.1155/2020/8865456
Allameh SK, Ringø E, Yusoff FM, Daud HM, Ideris A. 2017. Dietary supplement of Enterococcus faecalis on digestive enzyme activities, short-chain fatty acid production, immune system response and disease resistance
of Javanese carp (Puntius gonionotus, Bleeker 1850).
Aquac Nutr 23(2):331-338. https://doi.org/10.1111/anu.12397
Amin M, Adams M, Bolch CJS, Burke CM. 2017. In vitro screening of lactic acid bacteria isolated from gastrointestinal tract of Atlantic Salmon (Salmo salar) as probiont candidates. Aquac Int 25(1): 485-498. https://doi.org/10.1007/s10499-016-0045-6
Asaduzzaman M, Iehata S, Akter S, Kader MA, Ghosh SK, Khan MNA, Abol-Munafi AB. 2018a. Effects of host gut-derived probiotic bacteria on gut morphology, microbiota composition and volatile short chain fatty acids production of Malaysian Mahseer Tor tambroides. Aquac Rep 9 (January):53–61.
Asaduzzaman M, Sofia E, Shakil A, Haque NF, Khan MNA, IkedaD, Abol-Munafi AB. 2018b. Host gut-derived probiotic bacteria promote hypertrophic muscle progression and upregulate growth-related gene expression of slow-growing Malaysian Mahseer Tor tambroides. Aquac Rep 9 (September 2017):37–45. https://doi.org/10.1016/j.aqrep.2017. 12.001
Askarian F, Kousha A, Salma W, Ringø E. 2011. The effect of lactic acid bacteria administration on growth, digestive enzyme activity and gut microbiota in Persian sturgeon (Acipenser persicus) and beluga (Huso huso) fry. Aquac Nutri. (17):488-97. https://doi.org/10.1111/j.1365-2095.2010.00826.x
Azahar NZ, Iehata S, Fadhil F, Bulbul M, Kader MA. 2018. Antimicrobial activities of lactic acid bacteria isolated from Malaysian prawn, Macrobrachium rosenbergii. J Environ Biol 39(5):821-824 https://doi.org/10.22438/jeb/39/5(SI)/13
Buntin N, de Vos, W M, Hongpattarakere T. 2017. Variation of mucin adhesion, cell surface characteristics, and molecular mechanisms among Lactobacillus plantarum isolated from different habitats. Appl Microbiol and Biotechnol (101):7663-7674. https://doi.org/10.1007/s00253-017-8482-3
Chi C, Jiang B, Yu XB, Liu TQ, Xia L, Wang GX. 2014. Effects of three strains of intestinal autochthonous bacteria and their extracellular products on the immune response and disease resistance of common carp, Cyprinus carpio. Fish and Shellfish Immunology 36(1): 9–18. https://doi.org/10.1016/j.fsi.2013.10.003
Christensen BE. 1989. The role of extracellular polysaccharides in biofilms. J Biotechnol 10(1989):181-202. https://doi.org/10.1016/0168-1656(89)90064-3
Dawood MAO, Koshio S. 2016. Recent advances in the role of probiotics and prebiotics in carp aquaculture: A review. Aquaculture 10(1989):181-202.
Dawood MAO, Koshio S, Abdel-Daim MM, Van Doan H. 2019. Probiotic application for sustainable aquaculture. Reviews in Aquaculture 454(2016):243-251. https://doi.org/10.1016/j.aquaculture.2015.12.033
Deris ZM, Iehata S, Ikhwanuddin M, Sahimi MBMK, Dinh Do T, Sorgeloos P, Wong LL. 2020. Immune and bacterial toxin genes expression in different giant tiger prawn, penaeus monodon post-larvae stages following AHPND-causing strain of vibrio parahaemolyticus challenge. Aquac Rep 16(2020):100248 doi.org/10.1016/j.aqrep.2019.100248
Dopazo CP, Lemos ML, Lodeiros C, Bolinches J, Barja JL, Toranzo AE. 1988. Inhibitory activity of antibiotic?producing marine bacteria against fish pathogens. J Appl Bacteriol 65(1988):97-101.
Etyemez M, Balcazar JL. 2016. Isolation and characterization of bacteria with antibacterial properties from Nile tilapia (Oreochromis niloticus). Res Vet Sci 105(April 2016): 62–64.
Fe?kaninová A, Koš?ová J, Mudro?ová D, Popelka P, Toropilová J. 2017. The use of probiotic bacteria against Aeromonas infections in salmonid aquaculture. Aquaculture 469 (2017):1-8.
Garcés ME, Olivera NL, Fernández M, Riva Rossi C, Sequeiros C. 2020. Antimicrobial activity of bacteriocin-producing Carnobacterium spp. isolated from healthy Patagonian trout and their potential for use in aquaculture. Aquac Res 51(11):4602-4612. https://doi.org/10.1111/are.14806
Giraffa G, Chanishvili N, Widyastuti Y. 2010. Importance of lactobacilli in food and feed biotechnology. Res Microbiol 161(6):480-487. https://doi.org/10.1016/j.resmic.2010.03.001
Gomez-Gil B, Roque A, Turnbull JF. 2000. The use and selection of probiotic bacteria for use in the culture of larval aquatic organisms. Aquaculture 91(1-3):259-270. https://doi.org/10.1016/S0044-8486(00)00431-2
Gunasekara RAYSA, Rekecki A, Baruah K, Bossier P, Van den Broeck W. 2010. Evaluation of probiotic effect of Aeromonas hydrophila on the development of the digestive tract of germ-free Artemia franciscana nauplii. J Exp Mar Biol Ecol 393 (2010):78-82. https://doi.org/10.1016/j.jembe.2010.07.006
Hai NV. 2015. The use of probiotics in aquaculture. J Appl Microbiol 119:917–935.
Iehata S, Inagaki T, Okunishi S, Nakano M, Tanaka R, Maeda H. 2010. Improved gut environment of abalone Haliotis gigantea through Pediococcus sp. Ab1 treatment. Aquaculture 305:59-65. https://doi.org/10.1016/j.aquaculture.2010.04.012
Ina-Salwany MY, Al-saari N, Mohamad A, Mursidi F A, Mohd-Aris A, Amal MNA, Zamri-Saad M. 2019. Vibriosis in Fish: A Review on Disease Development and Prevention. J Aquat Anim Health 31(1) 3-22 https://doi.org/10.1002/aah.10045
Interaminense JA, Vogeley JL, Gouveia CK, Portela RWS, Oliveira JP, Andrade HA, Bezerra RS. 2018. In vitro and in vivo potential probiotic activity of Bacillus subtilis and Shewanella algae for use in Litopenaeus vannamei rearing. Aquaculture 488:114-122. https://doi.org/10.1016/j.aquaculture.2018.01.027
Irianto A, Austin B. 2002. Probiotics in aquaculture. J Fish Dis 25(2002):633-642.
Irianto A, Robertson PAW, Austin B. 2003. Oral administration of formalin-inactivated cells of Aeromonas hydrophila A3-51 controls infection by atypical A. salmonicida in goldfish, Carassius auratus (L.). J Fish Dis 26(2):117–120. https://doi.org/10.1046/j.1365-2761.2003.00439.x
Kamarudin MS, Ramezani-Fard E, Saad CR, Harmin SA. 2012. Effects of dietary fish oil replacement by various vegetable oils on growth performance, body composition and fatty acid profile of juvenile Malaysian mahseer, Tor tambroides. Aquac Nutr 8(5):532–543. https://doi.org/10.1111/j.1365-2095.2011.00907.x
Kavitha M, Raja M, Perumal P. 2018. Evaluation of probiotic potential of Bacillus spp. isolated from the digestive tract of freshwater fish Labeo calbasu (Hamilton, 1822). Aquac Rep 11:59–69.
Khushi SS, Sumon MS, Ahmmed MK, Hasan Zilani MN, Ahmmed F, Giteru SG, Sarower MG. 2020. Potential probiotic and health fostering effect of host gut-derived Enterococcus faecalis on freshwater prawn, Macrobrachium rosenbergii. Aquaculture and Fisheries article in press. doi.org/10.1016/j.aaf.2020.10.004. https://doi.org/10.1016/j.aaf.2020.10.004
Kong Y, Li M, Chu G, Liu H, Shan X, Wang G, Han G. 2021. The positive effects of single or conjoint administration of lactic acid bacteria on Channa argus: Digestive enzyme activity, antioxidant capacity, intestinal microbiota and morphology. Aquaculture 531:735-852.
Kong Y, Li M, Li R, Shan X, Wang G. 2020. Evaluation of cholesterol lowering property and antibacterial activity of two potential lactic acid bacteria isolated from the intestine of snakehead fish (Channa argus). Aquac Rep 17:100342. https://doi.org/10.1016/j.aqrep.2020.100342
Kozi?ska A, Figueras, MJ, Chacon MR, Soler L. 2002. Phenotypic characteristics and pathogenicity of Aeromonas genomospecies isolated from common carp (Cyprinus carpio L.). J Appl Microbiol 93:1034-1041. https://doi.org/10.1046/j.1365-2672.2002.01784.x
Kuebutornye FKA, Wang Z, Lu Y, Abarike ED, Sakyi ME, Li Y, Hlordzi V. 2020. Effects of three host-associated Bacillus species on mucosal immunity and gut health of Nile tilapia, Oreochromis niloticus and its resistance against Aeromonas hydrophila infection. Fish Shellfish Immunol 97:83-95
Kumar S, Stecher G, Tamura K. 2016. MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. Mol Biol Evol 33(7):1870-1874. https://doi.org/10.1093/molbev/msw054
Langdon A, Crook N, Dantas G. 2016. The effects of antibiotics on the microbiome throughout development and alternative approaches for therapeutic modulation. Genome Med 8(39):1-16.
Lazado CC, Caipang CMA, Estante EG. 2015. Prospects of host-associated microorganisms in fish and penaeids as probiotics with immunomodulatory functions. Fish Shellfish Immunol 45:2-12.
S kui Soon, Samuel L, Famila FDMM, Felecial C, N. kok H. 2014. Microbiological And Physicochemical Analysis Of Water From Empurau Fish (Tor Tambroides) Farm In Kuching, Sarawak, Malaysian Borneo. Int J Sci Technol Res 3(6):285–292
Lee kui Soon, Samuel Lihan, Famila Farvoin Ghulama Dashagir Michelle Mikal, Felecial Collick, N. kok H. 2014. Microbiological And Physicochemical Analysis Of Water From Empurau Fish (Tor Tambroides) Farm In Kuching, Sarawak, Malaysian Borneo. Int J Sci Tech Res. 3(6), 285–292. http://ir.unimas.my/id/eprint/4431
Lee LH, Mutalib NSA, Law JWF, Wong SH, Letchumanan V. 2018. Discovery on antibiotic resistance patterns of Vibrio parahaemolyticus in Selangor reveals carbapenemase producing Vibrio parahaemolyticus in marine and freshwater fish. Front Microbiol 9:(Article ID 2513):1-13.https://doi.org/10.3389/fmicb.2018.02513
Liu, H., Li, Z., Tan, B., Lao, Y., Duan, Z., Sun, W., & Dong, X. 2014. Isolation of a putative probiotic strain S12 and its effect on growth performance, non-specific immunity and disease-resistance of white shrimp, Litopenaeus vannamei. Fish Shellfish Immunol 41(2):300–307. https://doi.org/10.1016/j.fsi.2014.08.028
Liu J, Yi L, Wang X, Zhang Y, Guo X, Liu L, Lü X. 2017. A novel antimicrobial substance produced by Lactobacillus rhamnous LS8. Food Control 73:754-760. https://doi.org/10.1016/j.foodcont.2016.09.028
Martínez Cruz P, Ibáñez AL, Monroy Hermosillo OA, Ramírez Saad HC. 2012. Use of Probiotics in Aquaculture. ISRN Microbiol 2012 (Article ID91684:1-13.. doi.org/10.5402/2012/916845
Merrifield, DL, Dimitroglou A, Foey A, Davies SJ, Baker RTM, Bøgwald J, Ringø E. 2010. The current status and future focus of probiotic and prebiotic applications for salmonids Aquaculture 302(1-2):1-18. https://doi.org/10.1016/j.aquaculture.2010.02.007
Messaoudi S, Manai M, Kergourlay G, Prévost H, Connil N, Chobert JM, Dousset X. 2013. Lactobacillus salivarius: Bacteriocin and probiotic activity. Food Microbiol 36:296–304. https://doi.org/ 10.1016/ j.fm.2013. 05.010
Mishra P, Samanta M, Maiti NK, Sarangi N. 2009. Characterization of extracellular cytotoxic protein of Vibrio spp. isolated from freshwater carps and prawns. Indian Journal of Fisheries 56(4):307–311.
Mohd Nosi MZ, Syed Jamil Fadaak SNE, Muhammad MDD, Iehata S. 2018. Assessment of gut microbiota in different developmental stages of Malaysian Mahseer (Tor tambroides). Aquac Res 49(9):2977–2987. https://doi.org/10.1111/are.13757
Mukherjee A, Dutta D, Banerjee S, Ringø E, Breines EM, Hareide E, Ghosh K. 2016. Potential probiotics from Indian major carp, Cirrhinus mrigala. Characterization, pathogen inhibitory activity, partial characterization of bacteriocin and production of exoenzymes. Res Vet Sci 108(2016):76-84.
Nath S, Matozzo V, Bhandari D, Faggio C. 2019. Growth and liver histology of Channa punctatus exposed to a common biofertilizer. Nat Prod Res 33(11):1591–1598. https://doi.org/10.1080/14786419.2018.1428586
Ng WK, Abdullah N, De Silva SS. 2008. The dietary protein requirement of the Malaysian mahseer, Tor tambroides (Bleeker), and the lack of protein-sparing action by dietary lipid. Aquaculture 284:201-206.
Ng WK, Andin VC. 2011. The Malaysian mahseer, Tor tambroides (Bleeker), requires low dietary lipid levels with a preference for lipid sources with high omega-6 and low omega-3 polyunsaturated fatty acids. Aquaculture (322-323):82-90. https://doi.org/10.1016/j.aquaculture.2011.09.021
Novriadi R. 2016. Vibriosis in aquaculture. Omni-Akuatika. 12(1) 1-12. https://doi.org/10.20884/1.oa.2016.12.1.24
Pridgeon JW, Klesius PH. 2012. Major bacterial diseases in aquaculture and their vaccine development. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources 7(2012): 1-16. https://doi.org/10.1079/PAVSNNR20127048
Ray AK, Ghosh K, Ringø E. 2012. Enzyme-producing bacteria isolated from fish gut: A review. Aquac Nutr 18: 465-492. https://doi.org/10.1111/j.1365-2095.2012.00943.x
Ray AK, Roy T, Mondal S, Ringø E. 2010. Identification of gut-associated amylase, cellulase and protease-producing bacteria in three species of Indian major carps. Aquac Res 41(10):1462-1469.
Ringø E. 2020. Probiotics in shellfish aquaculture. Aquaculture and Fisheries 5(1):1–27.
Romero J, Gloria C, Navarrete P. 2012. Antibiotics in Aquaculture –Use, Abuse and Alternatives. Health and Environment in Aquaculture 6:160-198. https://doi.org/10.5772/28157
Safari O, Paolucci M .2018. Effect of in vitro selected synbiotics (galactooligosaccharide and mannanoligosaccharide with or without Enterococcus faecalis) on growth performance, immune responses and intestinal microbiota of juvenile narrow clawed crayfish, Astacus leptodactylus lep. Aquac Nutr 24(1):247–259. https://doi.org/10.1111/anu.12553
Saikot FK, Zaman R, Khalequzza M. 2013. Pathogenecity Test of Aeromonas Isolated from Motile Aeromonas Septicemia (MAS) Infected Nile Tilapia on Some Freshwater Fish. Sci Int 1(9):325-329.
Selim KM, El-Sayed HM, El-Hady MA, Reda RM .2019. In vitro evaluation of the probiotic candidates isolated from the gut of Clarias gariepinus with special reference to the in vivo assessment of live and heat-inactivated Leuconostoc mesenteroides and Edwardsiella sp. Aquac Int 27:35-51. https://doi.org/10.1007/s10499-018-0297-4
Serrano, PH (2005) Responsible use of antibiotics in aquaculture. FAO Fisheries Technical Paper.
Shahid M, Hussain B, Riaz D, Khurshid M, Ismail M, Tariq M. 2017. Identification and partial characterization of potential probiotic lactic acid bacteria in freshwater Labeo rohita and Cirrhinus mrigala. Aquac Res 48(4):1688-1698. https://doi.org/10.1111/are.13006
Tarkhani R, Imani A, Hoseinifar SH, Ashayerizadeh O, Sarvi Moghanlou K, Manaffar R, Reverter M. 2020. Comparative study of host-associated and commercial probiotic effects on serum and mucosal immune parameters, intestinal microbiota, digestive enzymes activity and growth performance of roach (Rutilus rutilus caspicus) fingerlings. Fish Shellfish Immunol 98:661-669.
Tey YH, Jong KJ, Fen SY, Wong HC. 2015. Occurrence of vibrio parahaemolyticus, vibrio cholerae, and vibrio vulnificus in the aquacultural environments of Taiwan. J Food Prot 78(5):969-976.
Touraki M, Frydas I, Karamanlidou G, Mamara A (2012) Partial purification and characterization of a bacteriocin produced by Bacillus subtilis NCIMB 3610 that exhibits antimicrobial activity against fish pathogens. J Biol Res 18:310-319.
Van Doan H, Hoseinifar SH, Khanongnuch C, Kanpiengjai A, Unban K, Van Kim V, Srichaiyo S. 2018. Host-associated probiotics boosted mucosal and serum immunity, disease resistance and growth performance of Nile tilapia (Oreochromis niloticus). Aquaculture 491:94-110.
Van Doan H, Hoseinifar SH, Ringø E, Ángeles Esteban M, Dadar M, Dawood MAO, Faggio C. 2020. Host-Associated Probiotics: A Key Factor in Sustainable Aquaculture. Rev Fish Sci Aquac 28(1):16–42. https://doi.org/10.1080/23308249.2019.1643288
Van TTH, Yidana Z, Smooker PM, Coloe PJ. 2020. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J Glob Antimicrob Resist (20):170-177.
Wright ES, Yilmaz LS, Noguera DR. 2012. DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. Appl Environ Microbiol 78(3):717-725. https://doi.org/10.1128/AEM.06516-11
Yan L, Pei X, Zhang X, Guan W, Chui H, Jia H, Yang D. 2019. Occurrence of four pathogenic Vibrios in Chinese freshwater fish farms in 2016. Food Control (95):85-89.
Zhou Z, Liu Y, Shi P, He S, Yao B, Ringø E. 2009. Molecular characterization of the autochthonous microbiota in the gastrointestinal tract of adult yellow grouper (Epinephelus awoara) cultured in cages. Aquaculture 286(3-4):184-189. https://doi.org/10.1016/j.aquaculture.2008.10.002

Most read articles by the same author(s)