Genetic diversity and phylogenetic analysis of Khiew-Phalee chickens based on mitochondrial DNA cytochrome b gene sequences

##plugins.themes.bootstrap3.article.main##

SIRIWADEE PHROMNOI
PREEDA LERTWATCHARASARAKUL
SAKUNA PHATTANAKUNANAN

Abstract

Abstract. Phromnoi S, Lertwatcharasarakul P, Phattanakunanan S. 2021. Genetic diversity and phylogenetic analysis of Khiew-Phalee chickens based on mitochondrial DNA cytochrome b gene sequences. Biodiversitas 23: 750-756. Khiew-Phalee Chickens (Gallus gallus) is a Thai indigenous breed, locally recognized for its economic value as an important source of revenue generation. As the Khiew-Phalee chicken cannot be accurately identified by morphological characterization, molecular methods for species identification are generally thought to be complementary and more effective than relying on the method alone. Molecular characterization of Khiew-Phalee Chickens was investigated using mitochondrial DNA (mtDNA) cytochrome b (Cyt b) gene analysis. Partial sequences of the 1,037 bp Cyt b gene were determined on 55 specimens of Khiew-Phalee chickens. The breed's genetic diversity was assessed based on the number of polymorphic sites, number of haplotypes, haplotype diversity, nucleotide diversity, and average number of differences. In addition, a neighbor-joining (NJ) haplotype tree was constructed based on Kimura's two-parameter model. Haplotype and nucleotide diversity of Khiew-Phalee chickens were 0.597 and 0.00068, respectively. Five haplotypes were identified from 4 polymorphic sites with polymorphism at nucleotides 501, 507, 543, and 1,095. Phylogenetic analysis with the inclusion of the Cyt b gene nucleotide sequences from Khiew-Phalee chickens and native chickens from the GenBank database showed that Khiew-Phalee chickens belonged to Gallus gallus. It was closest to the indigenous chicken in South East Asia. The phylogenetic tree indicated the genetic variability of the investigated Khiew-Phalee chicken populations. This study may help future researchers and livestock breeders to design a breeding program based on a better understanding of the genetic diversity and history of indigenous breeds.

##plugins.themes.bootstrap3.article.details##

References
Branicki W, Kupiec T. and Pawlowski R. 2003. Validation of Cytochrome b Sequence Analysis as a Method of Species Identification. J Forensic Sci Vol 48 (1): 83-87. DOI: 10.1520/JFS2002128.
Biodiversity Research and Development Section. 2014. Khiew-Palee native chicken. Available online: http://breeding.dld.go.th/biodiversity/chm/R%20.%20W/R%20.%20W.html. (In Thailand).
Duangjinda MK, Choprakarn S, Suwanlee P, Amnueysit Thieme O. 2012. Impact of the avian influenza outbreak on indigenous chicken genetic resources in Thailand. World's Poult Sci J 68: 503-512. DOI: 10.1017/S0043933912000608.
Guo C, McDowell IC, Nodzenski M, Scholtens DM, Allen AS, Lowe WL, Reddy TE. 2017. Transversions have larger regulatory effects than transitions. BMC Genomics 18: 394. DOI: 10.1186/s12864-017-3785-4.
Hartatik T, Harayono DNH, Adinata Y. 2019. Genetic diversity and phylogenetic analysis of two Indonesian local cattle breeds based on cytochrome b gene sequences. Biodiversitas 20(1): 17-22. DOI: 10.13057/biodiv/d200103.
Hata A, Nunome M, Suwanasopee T, Duengkae P, Chaiwatan S, Chamchumroon W, Suzuki T, Koonawootrittriron S, Matsuda Y, Srikulnath K 2021. Origin and evolutionary history of domestic chickens inferred from a large population study of Thai red jungle fowl and indigenous chickens. Sci. Rep. 11: 2035. DOI: 10.1038/s41598-021-81589-7.
Kawabe K, Worawut R, Taura S, Shimogiri T, Nishida T, Okamoto S. 2014. Genetic diversity of mtDNA D-loop polymorphisms in Laotian native fowl populations. Asian Australas J Anim Sci 27(1): 19-23. DOI: 10.5713/ajas.2013.13443
Kimura M. 1980. A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16: 111–120. doi: 10.1007/BF01731581.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. J Mol Evol 35: 1547-1549. DOI: 10.1093/molbev/msy096.
Liu YP, Wu GS, Yao YG, Miao YM, Luikart G, Baig M, Beja-Pereira A, Ding ZL, Palanichamy MG, Zhang YP. 2006. Multiple maternal origins of chickens: Out of the Asian jungles. Mol Phylogenet Evol 38(1): 12-19. DOI: 10.1016/j.ympev.2005.09.014.
Lv FH, Peng,WE, Yang J, Zhoa YX, Li WR, Liu MJ, Ma YH, Zhoa QJ, Yang GL, Wang F, Li JQ, Liu YG, Shen ZQ, Zhoa SG, Hehua E, Gorkhali NA, Muladno M, Naqvi AN, Tabell J, Touru TL, Bruford MW, Kantanen J, Han JL, Li MH. 2015. Mitogenomic meta-analysis identifies two phases of migration in the history of Eastern Eurasian sheep. Mol Biol Evol 32: 2515-2533. DOI: 10.1093/molbev/msv139.
Miao YW, Peng MS, Wu GS, Ouyang YN, Yang ZY, Yu N, Liang JP, Pianchou G, Beja-Pereira A, Mitra B, Palanichamy MG, Baig M, Chaudhuri TK, Shen YY, Kong QP, Murphy RW, Yao YG, Zhang YP. 2013. Chicken domestication: An updated perspective based on mitochondrial genomes. Heredity 110(3): 277–282. DOI: 10.1038/hdy.2012.83.
Noro MR, Dubrovo IA, Yoshida MC, Kato M. 1998. Molecular phylogenetic inference of the woolly mammoth Mammuthus primigenius, based on complete sequences of mitochondrial cytochrome b and 12S ribosomal RNA genes. Mol Biol Evol 46: 314-326. doi: 10.1007/pl00006308.
Olshewsky A, Hinrichs D. 2021. An overview of the use of genotyping techniques for assessing genetic diversity in local farm animal breeds. Animals 11(7), 2016. http://doi.org/10.3390/ani11072016.
Pramual P, Meeyen K, Wongpakam K, Klinhom U. 2013. Genetic diversity of Thai Native Chicken inferred from mitochondrial DNA sequences. Trop Nat Hist 13(2): 97-106.
Phromnoi S, Phattanakunanan S. 2017. Genetic diversity of native chicken in Uttaradit Province for sustainable of utilization and conservation. J Mahanakorn Vet Med 12(2): 67-77.
Phromnoi S, Ketpiyarat P, Mingchai C, Yeamkong S, Chitmun S, Rodboonsong S, Thanarak R. 2021. Biodiversity -Based Economy Development of Khiew-Phalee Native Chicken in Uttaradit for Increasing the Competitive Competence based on Sustainable Utilization and Conservation. [Research reports]. National Research Council of Thailand.
Rozas J, Ferrer-Mata A, Sanchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Alejandro Sanchez-Gracia A. 2017. DnaSP 6: DNA Sequence Polymorphism Analysis of Large Data Sets. Mol Biol Evol 34(12): 3299–3302. doi: 10.1093/molbev/msx248.
Suwannapoom C, Wu YJ, Chen X, Adeniyi C, Adeola AC, Chen J, Wang WZ. 2018. Complete mitochondrial genome of the Thai Red Junglefowl (Gallus gallus) and phylogenetic analysis. Zool Res 39(2): 127-129. doi: 10.24272/j.issn.2095-8137.2017.028.
Tajima F. 1989. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 597-601. doi: 10.1093/genetics/123.3.585.
Teinlek P, Siripattarapravat K, Tirawattanawanich C. 2018. Genetic diversity analysis of Thai indigenous chickens based on complete sequences of mitochondrial DNA D-loop region. Asian-Australas. J Anim Sci 31(6): 804-811. doi: 10.5713/ajas.17.0611.
Xie Z, Zhang Y, Deng X, Xie Z, Liu J, Huang L, Huang J, Zeng T, Wang S. 2016. Molecular characterization of the Cenxi classical three-buff chicken (Gallus gallus domesticus) based on mitochondrial DNA. Mitochondrial DNA Part A 27: 63968-63970. doi: 10.3109/19401736.2014.989508.
Yacoub HA, Fathi MM, Sadek MA. 2015. Using cytochrome b gene of mtDNA as a DNA barcoding marker in chicken strains. Mitochondrial DNA 26: 217–223. doi: 10.3109/19401736.2013.825771.