Ecological niche affects mitochondrial DNA diversity and variation in near-threatened Himalayan vulture (Gyps himalayensis)

##plugins.themes.bootstrap3.article.main##

CHANATIP UMMEE
https://orcid.org/0000-0002-2062-6487
RATIWAN SITDHIBUTR
PREEDA LERTWATCHARASARAKUL
CHAIYAN KASORNDORKBUA
https://orcid.org/0000-0002-2138-9954

Abstract

Abstract. Ummee C, Sitdhibutr R, Lertwatcharasarakul P, Kasorndorkbua C. 2023. Ecological niche affects mitochondrial DNA diversity and variation in near-threatened Himalayan vulture (Gyps himalayensis). Biodiversitas 24: 3630-3640. The impact from the use of diclofenac on the Indian subcontinent is the main reason why the Himalayan vulture Gyps himalayensis Hume, 1869 has near-threatened conservation status. In particular, it has ecological niches different from those of other vultures in the same genus; however, there has been no systematic study on genetic diversity. This study analyzed the genetic diversity of Himalayan vultures that had migrated to Thailand during the winter in conjunction with samples from a limited GenBank database. The results identified no evidence of Himalayan vulture genetic diversity loss after Gyps vultures were affected by diclofenac since the 1990s and the values were related to raptors with stable population status, which may be the result of ecological niche. Genetic differences or group divided were found in the mitochondrial DNA (mtDNA) Control Region (CR) and Cyt b+CR except in Cytochrome b (Cyt b). The group division based on the results of genetic distance between CR and Cyt b+CR shows that the genetic distance between groups of CR was 10-12 times greater than that of Cyt b (0.771±0.055-0.923±0.084 and 0.076±0.068, respectively) and the difference was also present when analyzed with the combined data set of Cyt b+CR (0.448±0.036). This is an important indicator for the possible study of population structure through phylogeography, because the Cyt b from other studies did not indicate any genetic differences between populations of Himalayan vulture and other Gyps vultures, which may update conservation proposals to be more accurate and effective.

##plugins.themes.bootstrap3.article.details##

References
Arshad M, Gonzalez J, El-Sayed AA, Osboene T, Wink M. 2009. Phylogeny and phylogeography of critically endangered Gyps species based on nuclear and mitochondrial markers. J. Ornithol. 150: 419-430. DOI: 10.1007/s10336-008-0359-x
Avise JC, Arnold J, Ball RM, Bermingham E, Lamb T, Neigel JE, Reeb CA, Saunders NC. 1987. Intraspecific Phylogeography: The Mitochondrial DNA Bridge between Population Genetics and Systematics. Annu. Rev. Ecol. Syst. 18: 489-522. DOI: 10.1146/annurev.ecolsys.18.1.489
BirdLife International. 2022. Species factsheet: Gyps himalayensis. http://www.birdlife.org
Bull JJ, Huelsenbeck JP, Cunningham CW, Swofford DL, Waddell PJ. 1993. Partitioning and combining data in phylogenetic analysis. Syst. Biol. 42: 384-397. DOI: 10.1093/sysbio/42.3.384
Cunningham CW. 1997. Can three incongruence tests predict when data should be combined. Mol. Biol. Evol. 14: 733-740. DOI: 10.1093/oxfordjournals.molbev.a025813
Darriba D, Taboada GL, Doallo R, Posada D. 2012. jModelTest 2: More models, new heuristics and parallel computing. Nat. Methods 9: 772. DOI: 10.1038/nmeth.2109
Das D, Cuthbert RJ, Jakati RD, Prakash V. 2011. Dicrofenac is toxic to the Himalayan Vulture Gyps himalayensis. Bird Conserv. Int. 21: 72-75. DOI: 10.1017/S0959270910000171
Excoffier L, Lischer HEL. 2010. Arlequin suite ver 3.5: a new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 10: 564-567. DOI: 10.1111/j.1755-0998.2010.02847.x
Ganbold O, Bing G-C, Munkhbayar M, Paek W-K, Purevee E, Jargal N, Oyunbat R, Jargalsaikhan A. 2020. Low genetic variation of cinereous vultures (Aegypius monachus) revealed by the mitochondrial COI gene in central Mongolia. J. Asia-Pac. Biodivers doi:10.1016. DOI: 10.1016/j.japb.2020.09.010
Godoy JA, Negro JJ, Hiraldo F, Donazar JA. 2004. Phylogeography, genetic structure and diversity in the endangered bearded vulture (Gypaetus barbatus, L.) as revealed by mitochondrial DNA. Mol. Ecol. 13: 371-390. DOI: 10.1046/j.1365-294X.2003.02075.x
Hailer F, Helander B, Folkestad AO, Ganusevich SA, Garstad S, Hauff P, Koren C, Masterov VB, Nygard T, Rudnick JA, Shiraki S, Sharphedinsson K, Volke V, Wille F, Vila C. 2007. Phylogeography of the white-tailed eagle, a generalist with large dispersal capacity. J. Biogeogr. 34: 1193-1206. DOI: 10.1111/j.1365-2699.2007.01697.x
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic acids symp. 40: 95-98. DOI: 10.1021/bk-1999-0734.ch008
Honnen A-C, Hailer F, Kenntner N, Litera?k I, Dubska? L, Zachos FE. 2010. Mitochondrial DNA and nuclear microsatellites reveal high diversity and genetic structure is an avian top predator, the white-tailed sea eagle, in central Europe. Biol. J. Linn. Soc. Lond. 99: 727-737. DOI: 10.1111/j.1095-8312.2010.01373.x
Jiang L, Peng L, Tang M, You Z, Zhang M, West A, Ruan Q, Chen W, Merilä J. 2019. Complete mitochondrial genome sequence of the Himalayan Griffon, Gyps himalayensis (Accipitriformes: Accipitridae): Sequence, Structure, and phylogenetic analyses. Ecol. Evol. 00: 1-16. DOI: 10.1002/ece3.5433
Johnson JA, Gilbert M, Virani MZ, Asim M, Mindell DP. 2008. Temporal genetic analysis of the critically endangered oriental white–backed vulture in Pakistan. Biol. Conserv. 141: 2403-2409. DOI: 10.1016/j.biocon.2008.07.001
Johnson JA, Lerner HRL, Rasmussen PC, Mindell DP. 2006. Systematic within Gyps vultures: a clade al risk. BMC Evol. Biol. 6: 1. DOI: 10.1186/1471-2148-6-65
Kasorndorkbua C, Chinuparawat C, Nualsri C. 2008. A Photographic Guide to the Raptors of Thailand. Amarin Printing and Publishing, Bangkok.
Kasorndorkbua C. 2019. Feeding station of wintering Himalayan Griffon Gyps himalayensis in Thailand. BirdingASIA 32:19-22.
Kasorndorkbua C, Sitdhibutr R, Sribuarod K, Safoowong M, Khamaye J. 2021. Post-release movement of one rehabbed and released Himalayan vulture from Thailand to China and Nepal between April and November 2021. www.BirdsofThailand.org.
Kumar S, Stecher G, Li M, Knyaz C, Tamura K. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 35: 1547-1549. DOI: 10.1093/molbev/msy096
Langguth T, Honnen A-C, Hailer F, Mizera T, Skoric S, Väli Ü, Zachos FE. 2012. Genetic structure and phylogeography of a European flagship species, the white-tailed sea eagle Haliaeetus albicilla. J. Avian Biol. 0: 1-9. DOI: 10.1111/j.1600-048X.2012.00075.x
Lu X, Ke D, Zeng X, Gong G., Ci R. 2009. Status, ecology, and conservation of the Himalayan Griffon Gyps himalayensis (Aves, Accipitridae) in the Tibetan Plateau. Ambio 38: 166-173. DOI: 10.1579/0044-7447-38.3.166
Mereu P, Satta V, Frongia GN, Berlinguer F, Muzzeddu M, Campus A, Decandia L, Pirastru M, Manca L, Naitana S, Leoni GG. 2017. The complete mtDNA sequence of the griffon vulture (Gyps fulvus): Phylogenetic analysis and haplotype frequency variations after restocking in the Sardinian population. Biol. Conserv. 214: 195-205. DOI: 10.1016/j.biocon.2017.08.017
Monti F, Duriez O, Arnal V, Dominici J-M, Sforzi A, Fusani L, Grémillet D, Montgelard C. 2015. Being cosmopolitan: evolutionary history and phylogeography of a specialized raptor, the Osprey Pandion haliaetus. BMC Evol. Biol. 15: 255. DOI: 10.1186/s12862-015-0535-6
Nei M. 1987. Molecular Evolutionary Genetics. Columbia University Press, New York.
Nittinger F, Gamauf A, Pinsker W, Wink M, Haring E. 2007. Phylogeography and population structure of the Saker falcon (Falco cherrug) and the infuence of hybridization: mitochondrial and microsatellite data. Mol. Ecol. 16: 1497-1517. DOI: 10.1111/j.1365-294X.2007.03245.x
Poulakakis N, Antoniou A, Mantziou G, Parmakelis A, Skartsi T, Vasilakis D, Elorriaga J, Puente JDL, Gavashelishvili A, Ghasabyan M, Katzner T, Mcgrady M, Batbayar N, Fuller M, Natsagdori T. 2008. Population structure, diversity, and phylogeography in the near-threatened Eurasian back vultures Aegypius monachus (Falconiformes; Accipitridae) in Europe: insights from microsatellite and mitochondrial DNA variation. Biol. J. Linn. Soc. Lond. 95: 859-872. DOI: 10.1111/j.1095-8312.2008.01099.x
Roques S, Negro JJ. 2005. MtDNA genetic diversity and population history of a dwindling raptorial bird, the red kite (Milvus milvus). Biol. Conserv. 126: 41-50. DOI: 10.1016/j.biocon.2005.04.020
Rozas J, Ferrer-Mata A, Sánchez-DelBarrio JC, Guirao-Rico S, Librado P, Ramos-Onsins SE, Sánchez-Gracia A. 2017. DnaSP v6: DNA sequence polymorphism analysis of large datasets. Mol. Biol. Evol. 34: 3299-3302. DOI: 10.1093/molbev/msx248
Schwarz G. 1978. Estimating the Dimension of a Model. Ann. Stat. 6: 461-464.
Sherub S, Fiedler W, Duriez O, Wikelski M. 2017. Bio-logging, new technologies to study conservation physiology on the move: a case study on annual survival of Himalayan vultures. J. Comp. Physiol. A 203: 531-542. DOI: 10.1007/s00359-017-1180-x
Siddique M, Khan AA. 2016. Spatio-temporal Decline of Himalayan griffon (Gyps himalayensis Hume, 1869) in Azad Jammu and Kashmir, Pakistan. Pak. J. Zool. 48: 961-968.
Thiollay J-M. 1994. Handbook of the birds of the world, Vol. 2. In: del Hoyo J, Elliott A, Sargatal J (eds) New World Vultures to Guineafowl. Lynx Edicions, Barcelona.
Thompson JD, Gibson TJ, Higgins DG. 2002. Multiple sequence alignment using ClustalW and ClustalX. Curr. Protoc. Bioinformatics chapter 2, Unit2.3. DOI: 10.1002/0471250953.bi0203s00
Tulsi RS. Himalayan Vulture migration route. 12th Asian Raptor Research and Conservation Network Symposium, 20-22 January 2022.
Wiens JJ. 1998. Combining Data Sets with Different Phylogenetic Histories. Syst. Biol. 47: 568-581. DOI: 10.1080/106351598260581
Wink M. 2007. Systematics. In: Bird DM, Bildstein KL (eds). Raptor research and management techniques. Hancock House, British Columbia.
Yong, DL, Kasorndorkbua C. 2008. The status of the Himalayan Griffon Gyps himalayensis in South-East Asia. Forktail 24: 57-62.
Zou D, Tian S, Zhang T, Zhuoma N, Wu G, Wang M, Dong L, Rossiter SJ, Zhao H. 2021. Vulture Genomes Reveal Molecular Adaptations Underlying Obligate Scavenging and Low Levels of Genetic Diversity. Mol. Biol. Evol. 38: 3649-3663. DOI: 10.1093/molbev/msab130.