Diversity and carbon sequestration capacity of naturally growth vegetation in ex-nickel mining area in Kolaka, Southeast Sulawesi, Indonesia




Abstract. Purnomo DW, Prasetyo LB, Widyatmoko D, Rushayati SB, Supriyatna I, Yani A. 2022. Diversity and carbon sequestration capacity of naturally growth vegetation in ex-nickel mining area in Kolaka, Southeast Sulawesi, Indonesia. Biodiversitas 23: 1433-1442. Efforts to restore forest integrity on ex-mining lands are essential to improve environmental quality and sequester carbon. One such effort is through revegetation of post-mined land including in ex-nickel mining in Southeast Sulawesi. This research analyzes the diversity of naturally regenerating plant species in the ex-nickel mining area in Kolaka, Southeast Sulawesi and determines several local tree species with the potential for carbon sequestration. Vegetation survey was conducted using a systematic nested sampling method at the post-mined site with three vegetation types: secondary forest, shrubs and bushes, and a reference/control site (i.e., natural forest in the nearby Lamedai Nature Reserve). Different types of vegetation were analyzed based on factors using Discriminant Analysis. Vegetation composition was analyzed using the Importance Value Index. Furthermore, biodiversity indicators were analyzed using Shannon-Wiener Diversity Index, Species Evenness Index, and Sorensen Similarity Index. Carbon absorption was measured using the leaf sample method and carbohydrate test. The results showed that the condition of the research site had been disturbed, and the succession process was still ongoing. The species diversity at all plant levels was classified as moderate category and the distribution of the community was unstable. At the tree level, the undisturbed areas had higher diversity. Eradication of Chromolaena odorata was needed to preserve the native vegetation and accelerate forest succession. Tree species recommended for restoring the ex-nickel mining area and carbon sequestration as core plants include Vitex glabrata R.Br., Alstonia macrophylla Wall. ex G.Don, Lithocarpus celebicus (Miq.) Rehder, Callicarpa pentandra Roxb., Dacryodes rugosa (Blume) H.J.Lam, Cananga odorata (Lam.) Hook.f. & Thomson, Glochidion rubrum Blume, Terminalia bellirica (Gaertn.) Roxb., and Psychotria calocarpa Ruiz & Pav., and other pioneer plants of Mallotus paniculatus (Lam.) Müll.Arg., Macaranga peltata (Roxb.) Müll.Arg., and Macaranga hispida (Blume) Müll.Arg.


Agaja MT, Adeleke EA, Adeniyi EE, Afolayan PT. 2020. The assessment of deforestation impact towards microclimate and environment in Ilorin, Nigeria. Geosfera Indonesia 5(3): 301-317. DOI: 10.19184/geosi.v5i3.16874.
Astuti I, Sari R, Susandarini R, Fatimatuz Z. 2018. Sarcotheca celebica Veldkamp: Persebarannya di Sulawesi, Status Konservasi dan Kelangkaan. J Biologi Indonesia 14(1): 143-146. DOI: 10.14203/jbi.v14i1.3672.
Austin KG, Schwantes A, YaofengGu, Kasibhatla PS. 2019. What causes deforestation in Indonesia? Environ Res Lett. 14 024007.
BNPB 2020. Doni Monardo Ungkap Tiga Faktor Penyebab Banjir Bandang Luwu Utara. www.bnpb.go.id [Indonesian]
BPS Provinsi Sulawesi Tenggara. 2021. Distribusi PDRB Provinsi Sulawesi Tenggara Menurut Lapangan Usaha (Persen). www.sultra.bps.go.id [Indonesian]
Capareda EP. 1999. Vitex glabrata R.Br. In: de Padua LS, Bunyapraphatsara N, Lemmens RHMJ (eds): Plant Resources of South-East Asia No 12(1): Medicinal and poisonous plants 1. PROSEA Foundation, Bogor, Indonesia. Database record: prota4u.org/prosea.
Chakravarthy D, Ratnam J. 2015. Seed dispersal of Vitex glabrata and Prunus ceylanica by civets (Viverriadae) in Pakke Tiger Reserve, North-East India: spatial patterns and post-dispersal seed fates. Trop Conserv Sci 8 (2): 491-504.
Daud M, Bustam BM, Arifin B. 2019. A comparative study of carbon dioxide absorption capacity of seven urban forest plant species of Banda Aceh, Indonesia. Biodiversitas 20 (11): 3372-3379. DOI: 10.13057/biodiv/d201134.
De Kok RPJ. 2008. The genus Vitex L (Lamiaceae) in the flora Malesiana region, excluding New Guinea. Kew Bul 63:17-40.
Dupuy JM, Chazdon RL. 2008. Interacting effects of canopy gap, understory vegetation and leaf litter on tree seedling recruitment and composition in tropical secondary forests. For Eco Manag 255: 3716–3725. DOI: 10.1016/j.foreco.2008.03.021.
Dyakov NR. 2013. Successional pattern, stand structure and regeneration of forest vegetation according to local environmental gradients. Ecol Balkanica 5(1): 69-85.
Federici S, Tubiello FN, Salvatore M, Jacobs H, Schmidhuber J. 2015. New estimates of CO2 forest emissions and removals: 1990–2015. For Eco Manag 352: 89–98. DOI: 10.1016/j.foreco.2015.04.022.
Fundter JM, de Graaf NR, Hildebrand JW, van Valkenburg JLCH. 1991. Terminalia bellirica (Gaertner) Roxb. In: Lemmens RHMJ, Wulijarni-Soetjipto N (eds): Plant Resources of South-East Asia No 3: Dye and tannin-producing plants. PROSEA Foundation, Bogor, Indonesia. Database record: prota4u.org/prosea
GBIF Secretariat 2021. GBIF Backbone Taxonomy. Checklist dataset https://doi.org/10.15468/39omei accessed via GBIF.org on 2021-12-08.
Goodall JM, Erasmus DJ. 1996. Review of the status and integrated control of the invasive alien weed, Chromolaena odorata, in South Africa. Agr Ecosyst Environ 56: 151–164.
Gunawan W, Basuni S, Indrawan A, Prasetyo LB, Soedjito H. 2011. Analisis Komposisi dan Struktur Vegetasi Terhadap Upaya Restorasi Kawasan Hutan Taman Nasional Gunung Gede Pangrango. J Pengelolaan Sumberdaya Alam dan Lingkungan 1(2): 93-105.
Hammer O, Harper DAT, Ryan PD. 2001. PAST: Paleontological Statistics Software Package for Education and Data Analysis. Palaeontologia Electronica, 4, 9p. www.palaeo-electronica.org
Hu, G. and Zhang, Z. 2013. Allelopathic effects of Chromolaena odorata on native and non-native invasive herbs. J Food Agric Environ 11: 878-882.
Kadir A, Suaib E, Zuada H. 2020. Mining in Southeast Sulawesi and Central Sulawesi: Shadow Economy and Environmental Damage Regional Autonomy Era in Indonesia. Proceedings of the International Conference on Social Studies and Environmental Issues (ICOSSEI 2019). Advances in Social Science, Education and Humanities Research, Volume 404, January 2020. DOI: 10.2991/assehr.k.200214.004.
Komarudin. 2019. Lingkungan Rusak Picu Bencana di Sulawesi Tenggara. www.mongabay.co.id. [Indonesian]
Kyere-Boateng R, Marek MV. 2021. Analysis of the social-ecological causes of deforestation and forest degradation in Ghana: Application of the DPSIR framework. Forests 12(4): 409. DOI: 10.3390/f12040409.
Lal R. 2005. Forest soils and carbon sequestration. For Ecol Manag J 220: 42–258. DOI: 10.1016/j.foreco.2005.08.015.
Lailati ML. 2013. Carbondioxide Sink Ability of 15 Plant Species Collection in Bogor Botanical Garden. Widyariset 16(2): 277–286. DOI: 10.14203/widyariset.16.2.2013.277-286.
Luo Y. 2019. Environmental problems in the mining of metal minerals. IOP Conference Series: Earth and Environmental Science 384 012195. DOI:10.1088/1755-1315/384/1/012195.
Locatelli B, Catterall CP, Imbach P, Kumar C, Lasco R, Marin-Spiotta E, Mercer B, Powers JS, Schwartz N, Uriarte M. 2015. Tropical reforestation and climate change: beyond carbon. Restor Ecol 23:337–343. DOI:10.1111/rec.12209.
Mandal G, Joshi SP. 2014. Invasion establishment and habitat suitability of Chromolaena odorata (L.) King and Robinson over time and space in the western Himalayan forests of India. J Asia-Pacific Biodivers 7: 391–400.
Mueller-Dombois D, Ellenberg H. 1974. Aims and methods of vegetation ecology. John Wiley & Sons, New York.
Nahdi MS, Darsikin. 2014. Distribusi dan kemelimpahan spesies tumbuhan bawah pada naungan Pinus mercusii, Acacia auriculiformis dan Eucalyptus alba di Hutan Gama Giri Mandiri, Yogyakarta. J Natur Indonesia 16(1): 33–41. DOI: 10.31258/jnat.16.1.33-41. [Indonesian]
Ong HC, Brotonogoro S. 2001. Psychotria viridiflora Reinw. ex Blume. In: van Valkenburg JLCH, Bunyapraphatsara N (eds): Plant Resources of South-East Asia No 12(2): Medicinal and poisonous plants 2. PROSEA Foundation, Bogor, Indonesia. Database record: prota4u.org/prosea
Ong PS. 2012. Mainstreaming native species-based forest restoration: A Synthesis-The Need to Change MAPS (Mindsets, Attitudes, and Practices). pp. 49-50. In: Neidel JD, Consunji H, Labozetta J, Calle A, Vega JM (eds). Mainstreaming Native Species-Based Forest Restoration: ELTI Conference Proceedings. Yale University, New Haven, CT; Smithsonian Tropical Research Institute, Panama City.
Pratiwi, Narendra BH, Siregar CA, Turjaman M, Hidayat A, Rachmat HH, Mulyanto, B, Suwardi, Iskandar, Maharani R, Rayadin R, Prayudyaningsih R, Yuwati TW, Prematuri R, Susilowati A. 2021. Managing and reforesting degraded post-mining landscape in Indonesia: A Review. Land 10, 658. DOI: 10.3390/land10060658.
Slik JWF, Keßler PJA, Welzen PCV. 2003. Macaranga and Mallotus Species (Euphorbiaceae) as Indicators for Disturbance in The Mixed Lowland Dipterocarp Forest of East Kalimantan (Indonesia). Ecol Indic 2: 311-324.
Soendjoto MA, Dharmono D, Mahrudin M, Riefani MK, Triwibowo D. 2015. Plant species richness after revegetation on the reclaimed coal mine land of PT Adaro Indonesia, South Kalimantan. J Manajemen Hutan Tropika 20(3): 150-158. DOI: 10.7226/jtfm.20.3.150.
Sievernich J, Giljum S, Luckeneder S. 2021. Mining-induced deforestation in Indonesia. Identifying spatial patterns and synergies with other economic activities. Fineprint Brief No. 13, March 2021. www.fineprint.global
Stewart AG. 2020. Mining is bad for health: a voyage of discovery. Environ Geochem Health 42: 1153–1165. DOI: 10.1007/s10653-019-00367-7.
Susanto D, Hayatudin, Setiawan A, Purnomo H, Ruhiyat D, Amirta R. 2017. Characterizing nutrient status and growth of Macaranga gigantea in tropical rainforest gaps after selective logging in East Kalimantan, Indonesia. Biodiversitas 18(3): 996-1003. DOI: 10.13057/biodiv/d180318.
Suseno T, Mulyani E. 2012. Southeast Sulawesi regional development concept based on mining sector leading commodities. J Teknologi Mineral dan Batubara 8(3): 119 – 131.
Tang CQ, Hou X, Gao K, Xia T, Duan C, Fu D. 2007. Man-made versus natural forests in mid-Yunnan, Southwestern China. Mount Res Develop 27: 242-249. DOI: 10.1659/mrd.0732.
Udayana C, Andreassen HP, Skarpe C. 2020. Understory diversity and composition after planting of teak and mahogany in Yogyakarta, Indonesia. J Sustain For 39(5): 494-510. DOI: 10.1080/10549811.2019.1686029.
Van Noordwijk M, Mulia R, Hairiah K. 2002. Bahan Ajar 8. Estimasi Biomasa Tajuk dan Akar Pohon Dalam Sistem Agroforestri: Analisis Cabang Fungsional (Functional Branch Analysis, Fba) Untuk Membuat Persamaan Alometrik Pohon. WaNuLCAS Model Simulasi Untuk Sistem Agroforestri. International Centre for Research in Agroforestry Southeast Asian Regional Research Programme, Bogor, Indonesia. [Indonesian]
Vásquez-Grandón A, Donoso PJ, Gerding V. 2018. Forest degradation: when is a forest degraded? Forests 9:726. DOI: 10.3390/f9110726.
Vijay V, Pimm SL, Jenkins CN, Smith SJ. 2016. The impacts of oil palm on recent deforestation and biodiversity loss. PLoS One 11(7): e0159668. DOI: 10.1371/journal.pone.0159668.
Wiryono, Douny JB. 2012. The recovery of plant species diversity in 14 year-old forest in rehabilitated mined land in Central Bengkulu. Page 188-195 in Proceeding of the 2nd International Conference on Biodiversity. The Society of Indonesian Bioversity, Mataram.
WRI. 2018. By the Numbers: The Value of Tropical Forests in the Climate Change Equation. www.wri.org
Yusuf UK, Sinohin VO. 1999. Cananga odorata (Lamk) Hook.f. & Thomson. In: Oyen LPA, Dung NX (eds): Plant Resources of South-East Asia No 19: Essential-oil plants. PROSEA Foundation, Bogor, Indonesia. Database record: prota4u.org/prosea.
Zheng YL, Liao ZY. 2017. High-density native-range species affects the invasive plant Chromolaena odorata more strongly than species from its invasive range. Sci Rep 7: 16075.

Most read articles by the same author(s)