Selection of tomato breeding lines based on morphological traits associated with high yield potential in double-cross population

##plugins.themes.bootstrap3.article.main##

WITRI NUR ANISA
ENIK NURLAILI AFIFAH
RUDI HARI MURTI

Abstract


Abstract. Anisa WN, Afifah EN, Murti RH. 2022. Selection of tomato breeding lines based on morphological traits associated with high yield potential in double-cross population. Biodiversitas 23: 2973-2980. Low tomato production is a global problem. Plant breeding has been intensified to develop high-yield varieties and meet the high production of vegetable crops. Selection is an essential part of plant breeding to evaluate desirable traits of breeding lines. This study aimed to identify tomato breeding lines with high yield potential from 13 breeding lines and 2 commercial tomatoes. Collected data were analyzed using analysis of variance, post hoc, path, and principal component analysis. Results showed that 9 tomato lines, namely, BV-1, BV-2, BV-3, BV-6, BV-7, BV-9, BV-11, BV-12, and BV-13 had a high yield potential based on the number of fruits per plant and fruit weight. Given their high path coefficient value and significant correlation (P<0.05) with the yield potential, these two characteristics are highly recommended to be used as selection criteria for the high yield potential of tomato plants. The following characteristics had a high value of heritability: fruit weight, fruit length, fruit diameter, fruit firmness, fruit locules, fruit pericarp thickness, total soluble solid, number of flowers per bunch, number of fruits per bunch, number of fruits per plant, and harvesting age.


##plugins.themes.bootstrap3.article.details##

References
Afifah E.N., R.H. Murti, A. Wahyudhi. 2021. Evaluation of a promising tomato line (Solanum Lycopersicum) derived from mutation breeding. Biodiversitas Journal of Biological Diversity 22(4): 1863-1868.
Lenaerts B., B.C.Y. Collard, M. Demont. 2019. Review: Improving global food security through accelerated plant breeding. Plant Science 287: 110207, ISSN 0168-9452. https://doi.org/10.1016/j.plantsci.2019.110207.
Adhikari B.N., B.P. Joshi, J. Shrestha, NabaR. Bhatta. 2018. Genetic variability, heritability, genetic advance and correlation among yield and yield components of rice (Oryza sativa L.). Journal of Agriculture and Natural Resources 1(1): 149-160.
Chaudhary J., A. Alisha, V. Bhatt, S. Chandanshive, N. Kumar, Z. Mir, A. Kumar, S.K. Yadav, S.M. Shivaraj, H. Sonah, R. Deshmukh. 2019. Mutation breeding in tomato: Advances, applicability, and challenges. Plants 8(5): 128.
Grozeva S., A.N. Nankar, D. Ganeva, I. Tringovska, G. Pasev, D. Kostova. 2021. Characterization of tomato accessions for morphological, agronomic, fruit quality, and virus resistance traits. Canadian Journal of Plant Science 101(4): 476-489. https://doi.org/10.1139/cjps-2020-0030.
Hassan Z., S. Ul-Allah, A.A. Khan, U. Shahzad, M. Khurshid, A. Bakhsh, H. Amin, M.S. Jahan, A. Rehim, Z. Manzoor. 2021. Phenotypic characterization of exotic tomato germplasm: An excellent breeding resource. PLOS ONE 16(6): e0253557.
Mustafa M., M. Syukur, S.H. Sutjahjo. 2017. Inheritance of fruit cracking resistance in tomato (Solanum Lycopersicum L.). Asian Journal of Agricultural Research 11: 10-17.
Qaim M. 2020. Role of new plant breeding technologies for food security and sustainable agricultural development. Applied Economic Perspectives and Policy 42(2): 129-150.
Roy S.C., P. Shil. 2020. Assessment of genetic heritability in rice breeding lines based on morphological traits and caryopsis ultrastructure. Scientific Reports 10(1): 7830.
Zhao X., X. Yuan, S. Chen, L. Meng, D. Fu. 2018. Role of the tomato TAGL1 gene in regulating fruit metabolites elucidated using RNA sequence and metabolomics analyses. PLOS ONE 13(6): e0199083.
Shashibhushan D., A.R. Muchanthula. 2021. The evolution of plant breeding techniques.The Pharma Innovation Journal 10(6): 580-584.
Resende N.C., A.Ad Silva, W.R. Maluf, J.T.Vd Resende, A.R. Zeist, A. Gabriel. 2020. Selection of tomato lines and populations for fruit shape and resistance to tomato leafminer. Horticultura Brasileira 38(2): 117-125. https://doi.org/10.1590/s0102-053620200202.
Mustafa M., M. Syukur, S.H. Sutjahjo, S. Sobir. 2018. Determination of selection criteria for tomato (Solanum Lycopersicum L.) yield component in the lowland based on path analysis. Agrotech Journal 3(1): 34-41. http://doi.org/10.31327/atj.v3i1.556.
Bernardo R. 2020. Reinventing quantitative genetics for plant breeding: Something old, something new, something borrowed, something BLUE. Heredity 125(6): 375-385. https://doi.org/10.1038/s41437-020-0312-1.
Chung P.Y., C.T. Liao. 2020. Identification of superior parental lines for biparental crossing via genomic prediction. PLOS ONE 15(12): e0243159. https://doi.org/10.1371/journal.pone.0243159.
Jh PdC., R. Gr, L. Dr, M. Sl, M. Basté E, P. La, Z. R, P. Gr. 2016. Tomato second cycle hybrids as a source of genetic variability for fruit quality traits. Crop Breeding and Applied Biotechnology 16(4): 289-297. https://doi.org/10.1590/1984-70332016v16n4a44.
Avdikos I.D., R. Tagiakas, I. Mylonas, I.N. Xynias, A.G. Mavromatis. 2021. Assessment of tomato recombinant lines in conventional and organic farming systems for productivity and fruit quality traits. Agronomy 11(1): 129. https://doi.org/10.3390/agronomy11010129.
Matos Rd, J.T.Vd Resende, A.R. Zeist, L.E. Corte, P.R. Da-Silva, D.M. Zeffa. 2021. Performance of the double-cross tomato hybrids from a partial diallel. Ciênc. Agrotec 45. https://doi.org/10.1590/1413-7054202145027320.
Sautomo M.W., M. Syukur. 2017. Evaluation of progress selection of F2 - F6 population, A cross between two lowland tomato genotypes. Journal of Tropical Crop Science 4(1): 32-40. https://doi.org/10.29244/jtcs.4.1.32-40.
Klápšte J., H.S. Dungey, E.J. Telfer, M. Suontama, N.J. Graham, Y. Li, R. McKinley. 2020. Marker Selection in Multivariate Genomic Prediction Improves Accuracy of Low Heritability Traits. Frontiers in Genetics 11: 499094. https://doi.org/10.3389/fgene.2020.499094.
Cobb J.N., R.U. Juma, P.S. Biswas, J.D. Arbelaez, J. Rutkoski, G. Atlin, T. Hagen, M. Quinn, E.H. Ng. 2019. Enhancing the rate of genetic gain in public-sector plant breeding programs: Lessons from the breeder’s equation. TAG. Theoretical and Applied Genetics. Theoretische und Angewandte Genetik 132(3): 627-645. https://doi.org/10.1007/s00122-019-03317-0.
Hakim L., Suyamto. 2017. Gene action and heritability estimates of quantitative characters among lines derived from varietal crosses of soybean. Indonesian Journal of Agricultural Science 18(1, June): 25-32. http://doi.org/10.21082/ijas.v.18.n1.2017.p.25–32.
Kesumawati E., Sabaruddin, E. Hayati, N. Hadisah, R. Hayati, Y. Haidar et al. 2022. Genetic variance and heritability estimation of hybridized pepper plants (Capsicum annuum L.) F2 progeny for Begomovirus resistance in growth stage. IOP Conference Series: Earth and Environmental Science. 3rd International Conference on Agriculture and Bio-industry 951(1). https://doi.org/10.1088/1755-1315/951/1/012103.

Most read articles by the same author(s)