Physicochemical properties in NOR tomato line MA 131-6-3 after treated with ethephon and calcium carbide induced ripening

##plugins.themes.bootstrap3.article.main##

ALFASSABIQ KHAIRI
RUDI HARI MURTI
SITI NURUL ROFIQO IRWAN
EKA TARWACA SUSILA PUTRA

Abstract


Abstract. Khairi A, Murti RH, Irwan SNR, Putra ETS. 2023. Physicochemical properties in NOR tomato line MA 131-6-3 after treated with ethephon and calcium carbide induced ripeningBiodiversitas 243029-3037Tomato fruit Postharvest Losses (PHL) from rotting, Physiological Weight Loss (PWL), inadequate nutrition, and other factors can lower fruit quality. Tomato is included as climacteric fruit which shows a significant increase in respiration and ethylene. The use of tomato with an extended shelf life due to genetic engineering, such as a Non-Ripening (NOR) tomato, can lower PHL. This experiment was carried out to evaluate physicochemical characteristics of NOR tomato fruit (lineMA 131-6-3 as result of selection F6)during postharvest after being treated by Ethephon (ET) (375, 750, 1,125, and 1,500 ppm), calcium carbide (CaC2) (5, 10, 15, and 20 gkg?1), and control. The experimental design was arranged in Randomized Completely Block Design with three replications.The ambient temperature was 28.30±1.75°C and relative humidity of 60.69±2.33%. The results showed the fruit ripening and physicochemical altered with CaCtreatment, then followed by yellow but did not alter to the red color for all treatments. The value of reduction sugar, respiration, ethylene, PWL, and pH increased, meanwhile the fruit firmness decreased caused by CaC2. Furthermore, ET could increase rotting during storage.


##plugins.themes.bootstrap3.article.details##

References
Akter, N, Huq, AKO, Akter, S, Alam, MdJ, Islam, MdM, Hossain, MdJ, Urmi, NT. 2019. Comparative assessment of natural and artificially ripened tomatoes and effects on storage life. Int J Food Sci Nutr 8 (4): 59-62. DOI: 10.11648/j.ijnfs.20190804.11.
Chattopadhyay, T, Hazra, P, Akhtar, S, Maurya, D, Mukherjee, A, Roy, S. 2021. Skin colour, carotenogenesis and chlorophyll degradation mutant alleles: genetic orchestration behind the fruit colour variation in tomato. Plant Cell Rep 40: 767-782. DOI: 10.1007/s00299-020-02650-9.
Dhall, RK, Singh, P. 2013. Effect of ethephon and ethylene gas on ripening and quality of tomato (Solanum Lycopersicum L.) during cold storage. Nutr Food Sci 3 (6). DOI: 10.4172/2155-9600.1000244.
Dhall, RK, Singh, P. 2016. Postharvest ripening and quality of tomato (Solanum lycopersicum L.) during cold storage. Veg Sci 43 (1): 50-57.
Ibrahim, M, Helali, MOH, Alam, AKMS, Talukder, D, Akhter, S. 2017. Physiological and biochemical characteristics of different tomato grown in Rajshahi region of Bangladesh. Bangladesh J Sci Ind Res 52 (3): 195-200. DOI: 10.3329/bjsir.v52i3.34155.
Khan, SAKU, Singh, Z, Musa, MMA, Payne, AD. 2016. 1-Hexylcyclopropene in retarding tomato (Lycopersicon esculentum Mill.) fruit ripening and its mode of action. Sci Hortic 213: 410-417. DOI: 10.1016/j.scienta.2016.10.018.
Li, L, Liu, H, Peng, Y, Li, S, Liu, T. 2014. Effects of exogenous ethylene on AC and rin tomato fruit. Adv Mat Res 1033-1034: 677-680. DOI: 10.4028/www.scientific.net/AMR.1033-1034.677.
Li, S, Zhu, B, Pirrello, J, Xu, C, Zhang, B, Bouzayen, M, Chen, K, Grierson, D. 2020. Roles of RIN and ethylene in tomato fruit ripening and ripening-associated traits. New Phytol 226 (2): 460-475. DOI: 10.1111/nph.16362.
Maduwanthi, SDT, Marapana, RAUJ. 2019. Induced ripening agents and their effect on fruit quality of banana. Int J Food Sci. DOI: 10.1155/2019/2520179.
Nascimento, RdaC, Freire, OdeO, Ribeiro, LS, Araújo, MB, Finger, FL, Soares, MA, Wilcken, CF, Zanuncio, JC, Ribeiro, WS. 2019. Ripening of bananas using Bowdichia virgilioides Kunth leaves. Sci Rep 9: 3548. DOI: 10.1038/s41598-019-40053-3.
Nura, A, Dandago, MA, Wali, NR. 2018. Effects of artificial ripening of banana (Musa spp) using calcium carbide on acceptability and nutritional quality. J Postharvest Technol 6 (2): 14-20.
Orsi, B, Sestari, I, Preczenhak, AP, Tessmer, MA, Souza, MAdaS, Hassimotto, NMA, Kluge, RA. 2021. Allelic variations in the tomato carotenoid pathway lead to pleiotropic effects on fruit ripening and nutritional quality. Postharvest Biol Technol 181: 111632. DOI: 10.1016/j.postharvbio.2021.111632.
Romadhoni RP, Purbaningtias TE, Muhaimin, Fauzi’ah L. 2017. Determination of reduction sugar form banana (Musa acuminata balbisiana colla) with different cooking process by UV-Visible Spectrophotometer. In: Proceedings of the 2nd International Seminar on Chemical Education, Yogyakarta. 403-409. [Indonesian]
Roohanitaziani, R, Lammers, M, Molthoff, J, Tikunov, Y, Meijer-Dekens, F, Visser, RGF, Arkel, Jv, Finkers, R, Maagd, RAd, Bovy, AG. 2022. Phenotyping of a diverse tomato collection for postharvest shelf-life. Postharvest Biol Technol 188: 111908. DOI: 10.1016/j.postharvbio.2022.111908.
Salas-Mendéz, EdeJ, Vicente, A, Pinheiro, AC, Ballesteros, LF, Silva, P, Rodríguez-García, R, Hernández-Castillo, FD, Díaz-Jiménez, MdeLV, Flores-López, ML, Villarreal-Quintanilla, JA, Peña-Ramos, FM, Carrillo-Lomelí, DA, de Rodríguez, DJ. 2019. Application of edible nanolaminate coatings with antimicrobial extract of Flourensia cernua to extend the shelf-life of tomato (Solanum lycopersicum L.) fruit. Postharvest Biol Technol 150: 19-27. DOI: 10.1016/j.postharvbio.2018.12.008.
Siddiqui, MW, Ayala-Zavala, JF, Dhua, RS. 2013. Genotypic variation in tomatoes affecting processing and antioxidant attributes. Crit Rev Food Sci Nutr 55 (13): 1819-1835. DOI: 10.1080/10408398.2012.710278.
Siddiqui, MW, Chakraborty, I, Homa, F, Dhua, RS. 2016. Bioactive compounds and antioxidant capacity in dark green, old gold crimson, ripening inhibitor, and normal tomatoes. Int J Food Prop 19 (3): 688-699. DOI: 10.1080/10942912.2015.1038563.
Suwanaruang T. 2016. Analyzing lycopene content in fruits. In: Proceedings of the Agriculture and Agricultural Science Procedia, Kalasin Province. 11: 46-48. [Thailand]
Tiwari, I, Shah, KK, Tripathi, S, Modi, B, Shrestha, J, Pandey, HP, Bhattarai, BP, Rajbhandari, BP. 2020. Post-harvest practices and loss assessment in tomato (Solanum lycopersicum L.) in Kathmandu, Nepal. Agric Nat Resour 3 (2): 335-352. DOI: 10.3126/janr.v3i2.32545.
Uluisik, S, Chapman, NH, Smith, R, Poole, M, Adams, G, Gillis, RB, Besong, TMD, Sheldon, J, Stiegelmeyer, S, Perez, L, Samsulrizal, N, Wang, D, Fisk, ID, Yang, N, Baxter, C, Rickett, D, Fray, R, Blanco-Ulate, B, Powell, ALT, Harding, SE, Craigon, J, Rose, JKC, Fich, EA, Sun, L, Domozych, DS, Fraser, PD, Tucker, GA, Grierson, D, Seymour, GB. 2016. Genetic improvement of tomato by targeted control of fruit softening. Nat Biotechnol 34 (9): 950-952. DOI: 10.1038/nbt.3602.
Wang, L, Zhang, X-L, Wang, L, Tian, Y, Jia, N, Chen, S, Shi, N-B, Huang, X, Zhou, C, Yu, Y, Zhang, Z-Q, Pang, X-Q. 2017. Regulation of ethylene-responsive SlWRKYs involved in color change during tomato fruit ripening. Sci Rep 7: 16674. DOI: 10.1038/s41598-017-16851-y.
Wang, R, Angenent, GC, Seymour, G, de Maagd, RA. 2020a. Revisiting the role of master regulators in tomato ripening. Trends Plant Sci 25 (3): 291-301. DOI: 10.1016/j.tplants.2019.11.005.
Wang, R, Lammers, M, Tikunov, Y, Bovy, AG, Angenent, GC, de Maagd, RA. 2020b. The rin, nor and Cnr spontaneous mutations inhibit tomato fruit ripening in additive and epistatic manners. Plant Sci 294: 110436. DOI: 10.1016/j.plantsci.2020.110436.
Xi, W, Zheng, H, Zhang, Q, Li, W. 2016. Profiling taste and aroma compound metabolism during apricot fruit development and ripening. Int J Mol Sci 17 (7): 998. DOI: 10.3390/ijms17070998.
Xu, F, Liu, S, Feng, X. 2016. Effect of 1-octylcyclopropene on physiological responses and expression of ethylene receptors gene in harvested tomato fruit. Postharvest Biol Technol 117: 30-37. DOI: 10.1016/j.postharvbio.2015.12.016.

Most read articles by the same author(s)