Coconut diversity based on chloroplast Single Nucleotide Amplified Polymorphism (SNAP) and Insertion-Deletion (InDel) markers

##plugins.themes.bootstrap3.article.main##

ANNISAA RAHMAWATI
DINY DINARTI
https://orcid.org/0000-0002-7939-5476
ISMAIL MASKROMO
HUGO ALFRIED VOLKAERT
SUDARSONO

Abstract

Abstract. Rahmawati A, Dinarti D, Maskromo I, Volkaert HA, Sudarsono. 2022. Coconut diversity based on chloroplast Single Nucleotide Amplified Polymorphism (SNAP) and Insertion-Deletion (InDel) markers. Biodiversitas 23: 4073-4081. Indonesia is known as a country rich in biodiversity, and a species with high diversity existing in Indonesia is coconut (Cocos nucifera L.). Although the high diversity of Indonesian coconut is recognized, information about its genetics is limited. The genetic relationship between Indonesian coconut and their maternal inheritance is important and has not been widely studied. This study aimed to analyze the genetic diversity of the Indonesian coconut using chloroplast SNAP and InDel markers, and evaluate their haplotype diversity. Sixty-four coconut accessions were evaluated using ten SNAP primers and five InDel primers based on cpDNA. All of the primers successfully amplified the cpDNA of most evaluated coconut accessions. Based on five InDel markers, six haplotypes were observed in Cocos nucifera. Phylogenetic analysis based on the combined SNAP and InDel markers divided the 64 coconut accessions into three clusters. The SNAP marker analysis results showed that they are less informative for evaluating coconut genetic diversity. On the other hand, the InDel markers are more informative and useful for coconut genetic diversity evaluation. Therefore, InDel markers based on chloroplast genomes has the potential for future coconut genetic variation analysis, evolutionary study, and DNA fingerprinting. The results should contribute to understanding the Indonesian coconut origins and evolution.

##plugins.themes.bootstrap3.article.details##

References
Abbas B, Renwarin Y, Bintoro MH, Sudarsono, Surahman M, Ehara H. 2010. Genetic diversity of sago palm in Indonesia based on chloroplast DNA (cpDNA) markers. Biodiversitas 11(3): 112-117. https://doi.org/10.13057/biodiv/d110302
Aljohi HA, Wanfei L, Qiang L, Yuhui Z, Jingyao Z, Ali A, Ibrahim OA, Abdullah OA, Abdullah MA, Hu S, Yu J. 2016. Complete sequence and analysis of coconut palm (Cocos nucifera) mitochondrial genome. PLoS ONE 11(10): 1–18. https://doi.org/10.1371/journal.pone.0163990
Allen GC, Flores-Vergara MA, Krasynanski S, Kumar S, Thompson WF. 2006. A modified protocol for rapid DNA isolation from plant tissues using cetyltrimethylammonium bromide. Nat Protoc 1(5): 2320–2325. https://doi.org/10.1038/nprot.2006.384
Allen JF. 2015. Why chloroplasts and mitochondria retain their own genomes and genetic systems: Colocation for redox regulation of gene expression. Proc Natl Acad Sci U S A 112(33): 10231–10238. https://doi.org/10.1073/pnas.1500012112
Androsiuk P, Jastrz?bski JP, Paukszto L, Makowczenko K, Okorski A, Pszczó?kowska A, Chwedorzewska KJ, Górecki R, Gie?wanowska, I. 2020. Evolutionary dynamics of the chloroplast genome sequences of six Colobanthus species. Scientific Reports 10:11522. Http://doi.org/10.1038/s41598-020-68563-5
Asaf S, Khan AL, Lubna, Khan A, Khan A, Khan G, Lee IJ, Al-Harrasi A. 2020. Expanded Inverted Repeat Region with Large Scale Inversion in The First Complete Plastid Genome Sequence of Plantago ovata. Sci Rep 3(10): 3881. https://doi.org/10.1038/s41598-020-60803-y
Balladona F, Maskromo I, Sukma D, Sudarsono. 2020. Development of molecular marker-based on SNP sites and InDel in coconut chloroplast genome. J Agronida 6(1): 1–13. https://doi.org/10.30997/jag.v6i1.2548
Bandelt HJ, Forster P, Rohl A. 1999. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol 16(1): 37–48. https://doi.org/10.1093/oxfordjournals.molbev.a026036
Bennett MS, Shiu SH, Triemer RE. 2017. A rare case of plastid protein-coding gene duplication in the chloroplast genome of Euglena archaeoplastidiata (Euglenophyta). Journal of Phycology 53(3): 493–502. https://doi.org/10.1111/jpy.12531
Bi Y, Zhang MF, Xue J, Dong R, Du YP, Zhang XH. 2018. Chloroplast genomic resources for phylogeny and DNA barcoding: a case study on Fritillaria. Sci Rep 8(1): 1184. https://doi.org/10.1038/s41598-018-19591-9
Boonkaew T, Mongkolsiriwatana C, Vongvanrungruang A, Srikulnath K, Peyachoknagu S. 2018. Characterization of GA20ox genes in tall and dwarf types coconut (Cocos nucifera L.). Genes & Genomics 40(7): 735–745. https://doi.org/10.1007/s13258-018-0682-4
Bromham L. 2016. An Introduction to Molecular Evolution and Phylogenetics. 2nd Edition. Oxford University Press, USA. ISBN: 978-0-19-873636-3
Budiman LF, Apriyanto A, Pancoro A, Sudarsono S. 2020. Illegitimacy Testing of Elaeis guineensis Population Based on Simple Sequence Repeat Markers. AGRIVITA, Journal of Agricultural Science 41 (3), 504-512. http://doi.org/10.17503/agrivita.v41i3.1969
Chen H, Wang D, Guo J, Duan X, Liu S, Chen D, Li Y. 2019. Monitoring the genetic effects of broodstock enhancement of silver carp (Hypophthalmichthys molitrix) in middle Yangtze River based on cytb gene and D-loop sequences. Journal of Freshwater Ecology 34(1): 323–332. https://doi.org/10.1080/02705060.2019.1588795
Choi KS, Son O, Park S. 2015. The chloroplast genome of Elaeagnus macrophylla and trnH duplication event in Elaeagnaceae. PLoS ONE 10(9): e0138727. https://doi.org/10.1371/journal.pone.0138727
Cosner ME, Jansen RK, Palmer JD, Downie SR. 1997. The highly rearranged chloroplast genome of Trachelium caeruleum (Campanulaceae): multiple inversions, inverted repeat expansion and contraction, transposition, insertions/deletions, and several repeat families. Curr Genet 31(5): 419–429. https://doi.org/10.1007/s002940050225
Gunn BF, Baudouin L, Olsen KM. 2011. Independent origins of cultivated coconut (Cocos nucifera L.) in the old world tropics. PLoS ONE 6(6): e21143. https://doi.org/10.1371/journal.pone.0021143
Harries HC, Clement CR. 2014. Long-distance dispersal of the coconut palm by migration within the coral atoll ecosystem. Ann Bot 113(4): 565–570. https://doi.org/10.1093/aob/mct293
Ingvarsson PK, Ribstein S, Taylor DR. 2003. Molecular evolution of insertions and deletion in the chloroplast genome of silene. Mol Biol Evol 20(11): 1737–1740. https://doi.org/10.1093/molbev/msg163
Jain A, Roorkiwal M, Kale S, Garg V, Yadala R, Varshney RK. 2019. InDel markers: An extended marker resource for molecular breeding in chickpea. PLoS ONE 14(3): 1–13. https://doi.org/10.1371/journal.pone.0213999
Jansen RK, Ruhlman TA. 2012. Plastid genomes of seed plants. In: Bock R., Knoop V (eds) Genomics of Chloroplasts and Mitochondria. Springer, Dordrecht. https://doi.org/10.1007/978-94-007-2920-9_5
Jiang D, Zhao Z, Zhang T, Zhong W, Liu C, Yuan Q, Huang L. 2017. The chloroplast genome sequence of Scutellaria baicalensis provides insight into intraspecific and interspecific chloroplast genome diversity in Scutellaria. Genes 8(227): 1–13. https://doi.org/10.3390/genes8090227
Jo IH, Kim YC, Kim DH, Kim KH, Hyun TK, Ryu H, Bang KH. 2017. Applications of molecular markers in the discrimination of Panax species and Korean ginseng cultivars (Panax ginseng). J Ginseng Res 41(4): 444–449. https://doi.org/10.1016/j.jgr.2016.09.001
Kim JH, Moon JC, Kang TS, Kwon K, Jang CS. 2017. Development of cpDNA markers for discrimination between Cynanchum wilfordii and Cynanchum auriculatum and their application in commercial C. wilfordii food products. Applied Biological Chemistry 60: 79–86. https://doi.org/10.1007/s13765-017-0252-5
Kim K, Lee SC, Lee J, Lee HO, Joh HJ, Kim NH, Park SH, Yang TY. 2015. Comprehensive survey of genetic diversity in chloroplast genomes and 45S nrDNAs within Panax ginseng species. PLoS ONE 10(6): e0117159. https://doi.org/10.1371/journal.pone.0117159
Koch MA, Dobes C, Matschinger M, Bleeker W, Vogel J, Kiefer M, Mitchell-Olds T. 2005. Evolution of the trnF(GAA) gene in Arabidopsis relatives and the Brassicaceae family: monophyletic origin and subsequent diversification of a plastidic pseudogene. Mol Biol Evol 22(4): 1032–1043. https://doi.org/10.1093/molbev/msi092
Kucukkal TG, Yang Y, Chapman SC, Cao W, Alexov E. 2014. Computational and experimental approaches to reveal the effects of single nucleotide polymorphisms with respect to disease diagnostics. Int J Mol Sci 15(6): 9670–9717. https://doi.org/10.3390/ijms15069670
Larekeng SH, Maskromo I, Purwito A, Mattjik NA, Sudarsono. 2015. Pollen dispersal and pollination patterns study in Pati Kopyor coconut using molecular markers. International Journal on Coconut R&D (CORD) 31(1): 46-60. https://doi.org/10.37833/cord.v31i1.70
Lee SJ, Shin YW, Kim YH, Lee SW. 2017. Molecular markers based on chloroplast and nuclear ribosomal DNA regions which distinguish Korean-specific ecotypes of the medicinal plant Cudrania tricuspidata Bureau. J Plant Biotechnol 44(3): 235–242. https://doi.org/10.5010/JPB.2017.44.3.235
Li X, Yang Y, Henry RJ, Rossetto M, Wang Y, Chen S. 2015. Plant DNA barcoding: from gene to genome. Biol Rev Camb Philos Soc. 90(1): 157-166. https://doi.org/10.1111/brv.12104
Li MM, Wang DY, Zhang L, Kang MH, Lu ZQ, Zhu RB, Mao XX, Xi ZX, Ma T. 2019. Intergeneric relationships within the family Salicaceae s.l. based on plastid phylogenomics. Int J Mol Sci 20(15): 3788. https://doi.org/10.3390/ijms20153788
Lidholm J, Szmidt A, Gustafsson P. 1991. Duplication of the psbA gene in the chloroplast genome of two Pinus species. Mol Gen Genet 226(3): 345–352. https://doi.org/10.1007/BF00260645
Liere K, Borner T. 2013. Development-dependent changes in the amount and structural organization of plastid DNA. In: Biswal B, Krupinska K, Biswal UC (eds) Plastid Development in Leaves During Growth and Senescence. Dordrecht: Springer, New York. https://doi.org/10.1007/978-94-007-5724-0_11
Lima EB, Sousa CN, Meneses LN, Ximenes NC, Santos Júnior MA, Vasconcelos GS, Lima NB, Patrocínio MC, Macedo D, Vasconcelos SM. 2015. Cocos nucifera (L.) (Arecaceae): A phytochemical and pharmacological review. Braz J Med Biol Res 48(11): 953–964. https://doi.org/10.1590/1414-431X20154773
López NG, Medina IO, Figueroa MS, Freaner FM, Arrazate CHA, Ovando AV. 2016. Unique haplotypes of cacao trees as revealed by trnH-psbA chloroplast DNA. PeerJ 4:1–18. https://doi.org/10.7717/peerj.1855
Mahayu WM, Taryono. 2019. Coconut (Cocos nucifera L.) diversity in Indonesia based on SSR molecular marker. In: Nuringtyas TR, Hidayati L, Rafieiy M (eds.) 1st International Conference On Bioinformatics, Biotechnology, And Biomedical Engineering (BIOMIC 2018). Yogyakarta, Indonesia, 19–20 October 2018. [Indonesian] https://doi.org/10.1063/1.5098418
Martinez-Alberola F, del Campo EM, Lázaro-Gimeno D, Mezquita-Claramonte S, Molins A, Mateu-Andrés I, Pedrola-Monfort J, Casano LM, Barreno E. 2013. Balanced gene losses, duplications and intensive rearrangements led to an unusual regularly sized genome in Arbutus unedo chloroplasts. PLoS ONE 8(11): e79685. https://doi.org/10.1371/journal.pone.0079685
Maskromo I, Novarianto H, Sukendah, Sukma D, Sudarsono. 2013. Productivity of Three Dwarf Kopyor Coconut Varieties from Pati, Central Java, Indonesia. International Journal on Coconut R&D (Cord) 29 (2): 19-28. https://doi.org/10.37833/cord.v29i2.86
Maskromo I, Larekeng SH, Novarianto H, Sudarsono S. 2016. Xenia negatively affecting kopyor nut yield in Kalianda Tall Kopyor and Pati Dwarf Kopyor coconuts. Emirate Journal of Food Agriculture 28(9): 644-652. https://doi.org/10.9755/ejfa.2015-07-552
Morley SA, Nielsen BL. 2016. Chloroplast DNA Copy Number Changes during Plant Development in Organelle DNA Polymerase Mutants. Front Plant Sci 7: 1–10. https://doi.org/10.3389/fpls.2016.00057
Morton BR, Clegg MT. 1993. A chloroplast DNA mutational hotspot and gene conversion in a non-coding region near rbcL in the grass family (Poaceae). Current Genetics 24(4): 357–365. https://doi.org/10.1007/BF00336789
Nadeem MA, Nawaz MA, Shahid MQ, Dogan Y, Comertpay G, Y?ld?ze M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, Hakan Özkan, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & biotechnological equipment 32(2): 261–285. https://doi.org/10.1080/13102818.2017.1400401
Natawijaya A, Ardie SW, Syukur M, Maskromo I, Hartana A, Sudarsono S. 2019. Genetic structure and diversity between and within African and American oil palm species based on microsatellite markers. Biodiversitas 20(5): 1233-1240. https://doi.org/10.13057/biodiv/d200501
Nguyen VB, Giang VNL, Waminal NE, Park HS, Kim NH, Jang W, Lee J, Yang TJ. 2020. Comprehensive comparative analysis of chloroplast genomes from seven Panax species and development of an authentication system based on species-unique single nucleotide polymorphism markers. J of Ginseng Research 44(1): 135–144. https://doi.org/10.1016/j.jgr.2018.06.003
Novarianto H, Maskromo I, Dinarti D, Sudarsono. 2014. Production technology for Kopyor coconut seed nuts and seedlings in Indonesia. International Journal on Coconut R&D (Cord) 30(2): 31-40. https://doi.org/10.37833/cord.v30i2.77
Panchy N, Lehti-Shiu M, Shiu SH. 2016. Evolution of gene duplication in plants. Plant Physiology 171: 2294–2316. https://doi.org/10.1104/pp.16.00523
Park I, Yang S, Kim WJ, Song JH, Lee HS, Lee HO, Lee JH, Ahn SN, Moon BC. 2019. Sequencing and comparative analysis of the chloroplast genome of Angelica polymorpha and the development of a novel inDel marker for species identification. Molecules 24(6): 1–14. https://doi.org/10.3390/molecules24061038
Park S, An B, Park S. 2020. Recurrent gene duplication in the angiosperm tribe Delphinieae (Ranunculaceae) inferred from intracellular gene transfer events and heteroplasmic mutations in the plastid matK gene. Scientific Reports 10: 1–11. https://doi.org/10.1038/s41598-020-59547-6
Perera SACN. 2014. Oil palm and coconut. In: Pratap A, Kumar J (eds) Alien Gene Transfer in Crop Plants. Volume 2. Springer, London. https://doi.org/10.1007/978-1-4614-9572-7_11
Perera L, Manimekalai R, Sudarsono S, Maskromo I, Lestari P. 2017. Coconut. In: Chowdappa P, Karun A, Rajesh MK (eds) Biotechnology of Plantation Crops, Astral International (P) Ltd, New Delhi, India. ISBN: 9789351248361. http://www.astralint.com/bookdetails.aspx?isbn=9789351248361.
Perrier X, Jacquemoud-Collet JP. 2006. DARwin software http://darwin.cirad.fr/
Pesik A, Efendi D, Novarianto H, Dinarti D, Sudarsono S. 2017. Development of SNAP markers based on nucleotide variability of WRKY genes in coconut and their validation using multiplex PCR. Biodiversitas 18 (2):465-475. https://doi.org/10.13057/biodiv/d180204
Pesik A, Efendi D, Novarianto H, Dinarty D, Maskromo I, Tenda ET, Sudarsono. 2015. Genetic diversity and association among Nias Yellow Dwarf (NYD), Tenga Tall (TAT) and KHINA-1 hybrid coconuts based on microsatellite markers. Bulletin Palma 16(2): 129-140. http://dx.doi.org/10.21082/bp.v16n2.2015.129-140
Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S. 2019. SSR identification and marker development for sago palm based on NGS genome data. Breeding Science 69(1): 1-10.
Rahayu MS, Setiawan A, Maskromo I, Purwito A, Sudarsono. 2019. Selection of pollen contributor for high endosperm quantity character in Kopyor Tall Coconut. Indonesian Journal of Agronomy 47(1): 97-104. https://doi.org/10.24831/jai.v47i1.21116
Rajesh MK, Sabana AA, Rachana KE, Rahman S, Jerard BA, Karun A. 2015. Genetic relationship and diversity among coconut (Cocos nucifera L.) accession revealed through SCoT analysis. Biotech 5: 999–1006. https://doi.org/10.1007/s13205-015-0304-7
Rintelen K, Arida E, Häuser C. 2017. A review of biodiversity-related issues and challenges in megadiverse Indonesia and other Southeast Asian countries. Research Ideas and Outcomes 3(e20860):1–16. https://doi.org/10.3897/rio.3.e20860
Schneider K, Weisshaar B, Borchardt DC, Salamini F. 2001. SNP frequency and allelic haplotype structure of Beta vulgaris expressed genes. Molecular Breeding 8(1): 63–74. https://doi.org/10.1023/A:1011902916194
Setiawan A, Rahayu MS, Maskromo I, Purwito A, Sudarsono (2020) Inheritance pattern of endosperm quantity and Kopyor coconut (Cocos nucifera L.) fruit variations. In: Sudarsono, Hidayat SH, Ehara H, Sagami JI, Sve?njak Z, Nurindah, Supriadi, Taringan S, Kaswanto LR, Izzah NK, Lestari P, Rostiana O, Bermawie N, Yulianti T, Pitono J, Wahyuno D, Wardiana E, et al. (eds) 1st International Conference on Sustainable Plantation "Better environment with better prosperity, harmonization of humankind and nature." IPB International Convention Central, Bogor, Indonesia, 20–22 August 2019. https://doi.org/10.1088/1755-1315/418/1/012039
Singh N, Choudhury DR, Singh AK, Kumar S, Srinivasan K, Tyagi RK, Singh NK, Singh R. 2013. Comparison of SSR and SNP markers in estimation of genetic diversity and population structure of Indian rice varieties. PLoS One 8(12): e84136. https://doi.org/10.1371/journal.pone.0084136
Song X, Wei H, Cheng W, Yang S, Zhao Y, Li X, Luo D, Zhang H, Feng X. 2015. Development of InDel markers for genetic mapping based on whole-genome resequencing in soybean. G3 (Bethesda) 5(12): 2793–2799. https://doi.org/10.1534/g3.115.022780
Sukendah S, Volkaert H, Sudarsono S. 2009. Isolation and analysis of DNA fragment of genes related to kopyor trait in coconut plants. Indonesian Journal of Biotechnology 14(2): 1169-1178. https://doi.org/10.22146/ijbiotech.7814
Tulalo MA, Mawardi S, Santosa B, Maskromo I, Hosan MLA, Novarianto H. 2019. Characteristics and potential for the development of Bido Tall Coconut. Buletin Palma 20(1): 11–18. http://dx.doi.org/10.21082/bp.v20n1.2019.11-18
Xiao Y, Xu P, Fan H, Baudouin L, Xia W, Bocs S, Xu J, Li Q, Guo A, Zhou L, Li J, Wu Y, Ma Z, Armero A, Issali AE, Liu N, Peng M, Yang Y. 2017. The genome draft of coconut (Cocos nucifera). Gigascience 6(11): 1–11. https://doi.org/10.1093/gigascience/gix095
Xiong AS, Peng RH, Zhuang J, Gao F, Zhu B, Fu XY, Xue Y, Jin XF, Tian YS, Zhao W, Yao QH. 2009. Gene duplication, transfer, and evolution in the chloroplast genome. Biotechnology Advances 27(4): 340–347. https://doi.org/10.1016/j.biotechadv.2009.01.012
Yang JY, Scascitelli M, Motilal LA, Sveinsson S, Engels JMM, Kane NC, Dempewolf H, Zhang D, Maharaj K, Cronk QCB. 2013. Complex origin of Trinitario-type Theobroma cacao (Malvaceae) from Trinidad and Tobago revealed using plastid genomics. Tree Genetics & Genomes 9: 829–840. https://doi.org/10.1007/s11295-013-0601-4
Yue X, Zheng X, Zong Y, Jiang S, Hu C, Yu P, Liu G, Cao Y, Hu H, Teng Y. 2018. Combined analyses of chloroplast DNA haplotypes and microsatellite markers reveal new insights into the origin and dissemination route of cultivated pears native to East Asia. Front. Plant Sci 8(591): 1–16. https://doi.org/10.3389/fpls.2018.00591
Zhang Y, Iaffaldano BJ, Zhuang X, Cardina J, Cornish K. 2017. Chloroplast genome resources and molecular markers differentiate rubber dandelion species from weedy relatives. BMC Plant Biology 17(34): 1–14. https://doi.org/10.1186/s12870-016-0967-1

Most read articles by the same author(s)

1 2 3 > >>