Sex-linked Single Nucleotide Polymorphism (SNP) identification and molecular marker development of salacca (Salacca zalacca (Gaertn.) Voss)

##plugins.themes.bootstrap3.article.main##

RIRY PRIHATINI
https://orcid.org/0000-0003-3938-4278
DINY DINARTI
https://orcid.org/0000-0002-7939-5476
AGUS SUTANTO
https://orcid.org/0000-0003-3003-0350
SUDARSONO

Abstract

Abstract. Prihatini R, Dinarti D, Sutanto A, Sudarsono. 2023. Sex-linked Single Nucleotide Polymorphism (SNP) identification and molecular marker development of salacca (Salacca zalacca (Gaertn.) Voss). Biodiversitas 24: 704-712. Salacca zalacca (Gaertn.) Voss is a native tropical fruit species of Indonesia with three different sex types, i.e., female, male, and hermaphrodite. Early sex identification plays a vital role in the dioecious plant development, cultivation, and breeding program. The morphological and histological markers cannot differentiate salacca sex types during vegetative stages, during which molecular approaches are offered. Isolation of salacca's partial Transducin Beta Like-3 (TBL3) gene was done using Phoenix dactylifera L. TBL3-specific primers. After DNA sequencing and multiple sequence alignment, the putative TBL3 aligned data was used to construct a phylogenetic tree, find SNAP primers, and use the generated markers as predictors for sex-type phenotypes of salacca. Phylogenetic analysis showed that the dendrogram of aligned TBL3 partial sequences of salacca and other taxa showed that the salacca TBL3 is closely related to P. dactylifera and Elaeis guineensis Jacq. since the three palms belong to the same Arecaceae family. The partial sequence of the TBL3 gene of hermaphrodite salacca revealed ten single nucleotide polymorphisms (SNPs) compared to those of female and male plants. Protein alignment of the sequence also showed several differences, which may lead to different flower morphogenesis. The salacca SNAP sex-types markers were developed from one of the SNP sites and validated using samples from farmer plantations. The SNAP primer pairs of STBL1F-Ref - STBL1-Rev amplified a 300 bp fragment from hermaphrodite samples, whereas no band was amplified from the female and male samples. On the contrary, primers STBL1F-Alt - STBL1-Rev amplified a 300 bp fragment from female and male plants but not from the hermaphrodite plants. The salacca's TBL3 sequences and the SNAP markers are valuable tools for further salacca genomic exploration.

##plugins.themes.bootstrap3.article.details##

References
Abreu IS, Carvalho CR, Soares, FAF. 2015. Early sex discrimination in Carica papaya by nuclei FISH. Euphytica 206: 667–676. https://doi.org/10.1007/s10681-015-1485-1.
Al-Ameri AA, Al-Qurainy F, Gaafar ARZ, Khan S, Nadeem M. 2016. Molecular identification of sex in Phoenix dactylifera using inter simple sequence repeat markers. Biomed Res. Int. 4530846. https://doi.org/10.1155/2016/4530846.
Albert LP, Campbell LG, Whitney KD. 2011. Beyond simple reproductive assurance: Cleistogamy allows adaptive plastic responses to pollen limitation. Int. J. Plant Sci. 172: 862–869. https://doi.org/10.1086/660883.
Ali HBM, Abubakari A, Wiehle M, Krutovsky KV. 2018. Gene-specific sex-linked genetic markers in date palm (Phoenix dactylifera L.). Genet. Resour. Crop Evol. 65: 1–10. https://doi.org/10.1007/s10722-017-0564-7.
Cherif E, Zehdi-Azouzi S, Crabos A, Castillo K, Chabrillange N, Pintaud JC, Salhi-Hannachi A, Glémin S, Aberlenc-Bertossi F. 2016. Evolution of sex chromosomes prior to speciation in the dioecious Phoenix species. J. Evol. Biol. 29: 1513–1522. https://doi.org/10.1111/jeb.12887.
Drenkard E, Richter BG, Rozen S, Stutius LM, Angell NA, Mindrinos M, Cho RJ, Oefner PJ, Davis RW, Ausubel FM. 2000. A simple procedure for the analysis of single nucleotide polymorphism facilitates map-based cloning in Arabidopsis. Plant Physiol. 124: 1483–1492. https://doi.org/10.1104/pp.124.4.1483.
Ediwirman, Suliansyah I, Gustian, Jamsari, 2015. Specific RAPD fragments related with sex type in salacca (Salacca edulis L.). Int. J. Agric. Sci. 1: 34–45.
El-Din Solliman M, Mohasseb HAA, Al-Khateeb AA, Al-Khateeb SA, Chowdhury K, El-Shemy HA, Aldaej MI. 2019. Identification and sequencing of Date-SRY Gene: A novel tool for sex determination of date palm (Phoenix dactylifera L.). Saudi J. Biol. Sci. 26: 514–523. https://doi.org/10.1016/j.sjbs.2017.08.002.
Elly SS, Watuguly TW, Rumahlatu D. 2018. Short Communication?: Genetic diversity of Salacca edulis from West Seram District, Maluku, Indonesia, based on morphological characters and RAPD profiles. Biodiversitas 19: 1777–1782. https://doi.org/10.13057/biodiv/d190526.
Felsenstein J.1985. Confidence limit on phylogenesis: An approach using bootstrap. Evolution (N. Y). 39: 783–791.
Friska M. 2019. Identifikasi kromosom hasil cangkok anakan salak Sidempuan (Salacca sumatrana Becc.) di Kecamatan Angkola Barat. J. Pertan. Trop. 6: 466–471. https://doi.org/10.32734/jpt.v6i3.3211.
Griffith ME, Mayer U, Capron A, Ngo QA, Surendrarao A, McClinton R, Jürgens G, Sundaresan V. 2007. The TORMOZ gene encodes a nucleolar protein required for regulated division planes and embryo development in Arabidopsis. Plant Cell 19: 2246–2263. https://doi.org/10.1105/tpc.106.042697.
Hadi P, Purwantoro A, Prajitno D. 2002. Identifikasi kromosom dalam penentuan jenis kelamin tanaman salak (salacca zalacca (Gaertner) Voss). Agrosains 15: 31–46.
Heikrujam M, Sharma K, Prasad M, Agrawal V. 2015. Review on different mechanisms of sex determination and sex-linked molecular markers in dioecious crops: a current update. Euphytica 201: 161–194. https://doi.org/10.1007/s10681-014-1293-z.
Indhirawati R, Purwantoro A. 2019. Telomere Length Determination Based on Different Sex and Leaf Development of Snake Fruit (Salacca zalacca GART. VOSS.) Revealed by Polymerase Chain Reaction. Agricultural Sci. 3: 146. https://doi.org/10.22146/ipas.36172.
Intha N, Chaiprasart P. 2018. Sex determination in date palm (Phoenix dactylifera L.) by PCR-based marker analysis. Sci. Hortic. (Amsterdam). 236: 251–255. https://doi.org/10.1016/j.scienta.2018.03.039.
Ismail NA, Fadzelly M, Bakar A. 2018. Salak — Salacca zalacca, Exotic Fruits Reference Guide. Elsevier Inc. https://doi.org/10.1016/B978-0-12-803138-4.00051-4.
Kafkas S, Khodaeiaminjan M, Güney M, Kafkas E. 2015. Identification of sex-linked SNP markers using RAD sequencing suggests ZW/ZZ sex determination in Pistacia vera L. BMC Genomics 16: 1–11. https://doi.org/10.1186/s12864-015-1326-6.
Khoo HE, Azlan A, Kong KW, Ismail A. 2016. Phytochemicals and Medicinal Properties of Indigenous Tropical Fruits with Potential for Commercial Development. Evidence-based Complement. Altern. Med. 2016. https://doi.org/10.1155/2016/7591951
Kim MY, Van K, Lestari P, Moon JK, Lee SH. 2005. SNP identification and SNAP marker development for a GmNARK gene controlling supernodulation in soybean. Theor. Appl. Genet. 110: 1003–1010. https://doi.org/10.1007/s00122-004-1887-2.
Koike S, Yamaguchi T, Ohmori S, Hayashi T, Yatou O, Yoshida H. 2015. Cleistogamy decreases the effect of high-temperature stress at flowering in rice. Plant Prod. Sci. 18: 111–117. https://doi.org/10.1626/pps.18.111.
Lestari P, Koh HJ. 2013. Development of New CAPS/dCAPS and SNAP Markers for Rice Eating Quality. HAYATI J. Biosci. 20: 15–23. https://doi.org/10.4308/hjb.20.1.15.
Li R, Li J, Yin G, Yang J, Zou W, Bai L. 2017. A male-specific SCAR DNA marker and sex ratio of seedlings in salak (Salacca zalacca var. zalacca). J. For. Res: 28, 47–50. https://doi.org/10.1007/s11676-016-0296-0.
Mammadov J, Aggarwal R, Buyyarapu R, Kumpatla. 2012. SNP markers and their impact on plant breeding. Int. J. Plant Genomics 2012. https://doi.org/10.1155/2012/728398.
Maryam MJ, Jaskani FS, Awan S, Ahmad, Khan IA. 2016. Development of molecular method for sex identification in date palm (Phoenix dactylifera L.) plantlets using novel sex-linked microsatellite markers. 3 Biotech 6, 1–7. https://doi.org/10.1007/s13205-015-0321-6.
Mazumdar P, Pratama H, Lau SE, Teo CH, Harikrishna JA. 2019. Biology, phytochemical profile and prospects for snake fruit: An antioxidant-rich fruit of South East Asia. Trends Food Sci. Technol. 91: 147–158. https://doi.org/10.1016/j.tifs.2019.06.017.
Milewicz M, Sawicki J. 2012. Mechanisms of Sex Determination in Plants. ?as. Slez. Muz. Opava. https://doi.org/10.2478/v10210-012-0013-3.
Mukherjee D, Saha D, Acharya D, Mukherjee A, Chakraborty S, Ghosh TC. 2018. The role of introns in the conservation of the metabolic genes of Arabidopsis thaliana. Genomics 110(5): 310–317. https://doi.org/10.1016/j.ygeno.2017.12.003.
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, Ahmad F, Alsaleh A, Labhane N, Özkan H, Chung G, Baloch FS. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol. Biotechnol. Equip. 32: 261–285. https://doi.org/10.1080/13102818.2017.1400401.
Pakull B, Kersten B, Lüneburg J, Fladung M. 2015. A simple PCR-based marker to determine sex in aspen. Plant Biol. 17: 256–261. https://doi.org/10.1111/plb.12217.
Pawe?kowicz ME, Skarzy?ska A, Plader W, Przybecki Z. 2019. Genetic and molecular bases of cucumber (Cucumis sativus L.) sex determination. Mol. Breed. 39. https://doi.org/https://doi.org/10.1007/s11032-019-0959-6.
Pesik A, Efendi D, Novarianto H, Dinarti D, Sudarsono S. 2017. Development of SNAP markers based on nucleotide variability of WRKY genes in coconut and their validation using multiplex PCR. Biodiversitas 18: 465–475. https://doi.org/10.13057/biodiv/d180204.
Poczai P, Varga I, Laos M, Cseh A, Bell N, Valkonen JPT, Hyvönen J. 2013. Advances in plant gene-targeted and functional markers: A review. Plant Methods 9. https://doi.org/10.1186/1746-4811-9-6.
Saitou N, Nei M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic tree. Mol. Biol. Evol. 4: 406–425.
Sarkar S, Banerjee J, Gantait S. 2017. Sex-oriented research on dioecious crops of Indian subcontinent: an updated review. 3 Biotech 7: 1–16. https://doi.org/10.1007/s13205-017-0723-8.
Sauquet H. 2021. Evolution: Cleistogamy to the rescue of zygomorphic flowers. Curr. Biol. 31: R332–R335. https://doi.org/10.1016/j.cub.2021.01.054.
Supapvanich S, Megia R, Ding P. 2011. Salak (Salacca zalacca (Gaertner) Voss), Postharvest Biology and Technology of Tropical and Subtropical Fruits. Woodhead Publishing Limited. https://doi.org/10.1533/9780857092618.334.
Sun Y, Zhang H, Fan M, He Y, Guo P. 2020. A mutation in the intron splice acceptor site of a GA3ox gene confers dwarf architecture in watermelon (Citrullus lanatus L.). Scientific Reports 10(1): 1–15. https://doi.org/10.1038/s41598-020-71861-7.
Sutanto A, Hermanto C, Sukma D, Sudarsono S. 2013. Pengembangan Marka SNAP Berbasis Resistance Gene Analogue Pada Tanaman Pisang ( Musa spp .) ( Development of SNAP Marker Based On Resistance Gene Analogue Genomic Sequences in Banana. J. Hortik. Indones. 23: 300–309.
Tamura K, Stecher G, Kumar S. 2021. MEGA11: Molecular Evolutionary Genetics Analysis Version 11. Mol. Biol. Evol. 38: 3022–3027. https://doi.org/10.1093/molbev/msab120.
Torres MF, Mathew LS, Ahmed I, Al-Azwani IK, Krueger R, Rivera-Nuñez D, Mohamoud YA, Clark AG, Suhre K, Malek JA. 2018. Genus-wide sequencing supports a two-locus model for sex determination in Phoenix. Nat. Commun. 9. https://doi.org/10.1038/s41467-018-06375-y.
Wurz A, Grass I, Tscharntke T. 2021. Hand pollination of global crops – A systematic review. Basic Appl. Ecol. 56: 299–321. https://doi.org/10.1016/j.baae.2021.08.008.
Zhang Q, Liu C, Liu Y, Van Buren R, Yao X, Zhong C, Huang H. 2015. High-density interspecific genetic maps of kiwifruit and the identification of sex-specific markers. DNA Res. 22: 367–375. https://doi.org/10.1093/dnares/dsv019.
Zumaidar, Miftahuddin. 2018. Species distribution of genus Salacca, in: Proceeding of IOP Conference; Journal of Physics: Cof. Series. p. 1116: 052083. https://doi.org/10.1088/1742-6596/1116/5/052083.

Most read articles by the same author(s)

1 2 3 > >>