Edamame protein hydrolysis using Lactococcus lactis, Lactobacillus bulgaricus and Lactobacillus paracasei produce short peptides with higher antioxidant potential

##plugins.themes.bootstrap3.article.main##

SITI LUTFIAH ANGGRAENI
JAY JAYUS
ANAK AGUNG ISTRI RATNADEWI
NURHAYATI NURHAYATI

Abstract

Abstract. Anggraeni SL, Jayus J, Ratnadewi AAI, Nurhayati N. 2022. Edamame protein hydrolysis using Lactococcus lactis, Lactobacillus bulgaricus and Lactobacillus paracasei produce short peptides with higher antioxidant potential. Biodiversitas 23: 3604-3613. The high demand for protein sources for functional vegetable foods, especially proteins that have ACE (Angiotensin-Converting Enzyme) inhibitory activity has encouraged efforts to meet this need through exploration of potential protein sources and the development of food processing technology to modify the protein into derivative compounds in the form of short peptides to promote higher bioactivity than the native protein. This research focused on the hydrolysis of edamame proteins into shorter peptides through a fermentation process using a group of Lactic Acid Bacteria (LABs), that is Lactococcus lactis, Lactobacillus bulgaricus and L. paracasei, to gain a higher functional activity of its protein hydrolysate. Edamame milk was fermented with that LABs as starter culture until 24 hours at 37ºC. The activity of the protease released by the LABs was confirmed using the agar diffusion method based on the emergence of a clear zone surrounding the culture, while the antioxidant activity was confirmed with the ABTS and hydroxyl radical scavenging methods. The results exhibited that the population density of starter culture in edamame milk reached 108 CFU/mL, and the pH decreased from 6.75 to 4.15. All LABs used in fermentation were able to hydrolyze protein as indicated by the increasing degree of hydrolysis and changes in protein profile of SDS-PAGE analysis. In addition, when compared to the unfermented edamame milk, the protein hydrolysate from LABs fermentation showed an increase of ABTS and hydroxyl radical inhibitory activity, in which the highest IC50 values ??of 8.96 and 13.33 g/mL of each were found in edamame milk fermented by Lc. lactis InaCC B187. An increase in ACE inhibitory activity was also observed in edamame milk fermented using this microbe (9.80 g/µL). These findings indicate that Lc. lactis InaCC B187, L. delbrueckii subspecies bulgaricus FNCC41, and L. paracasei InaCC B145 have the potency as an effective starter culture to increase bioactive peptides in edamame soybeans potential for functional food sources.

##plugins.themes.bootstrap3.article.details##

References
Adler-Nissen J. 1979. Determination of The Degree of Hydrolysis of Food Protein Hydrolysates by Trinitrobenzenesulfonic Acid. Journal of Agricultural and Food Chemistry. 27: 1256–1262. DOI: 10.1021/jf60226a042.
Agyei D, Danquah MK. 2011. Industrial-scale manufacturing of pharmaceutical-grade bioactive peptides. Biotechnology Advances, 29 (3): 272–277.DOI: 10.1016/j.biotechadv.2011.01.001.
attanasiritham, L., C. Theerakulkait, S. Wickramasekara, C.S. Maier, and J.F.
attanasiritham, L., C. Theerakulkait, S. Wickramasekara, C.S. Maier, and J.F.
Bao Z, Chi Y. 2016. In Vitro and In Vivo Assessment of Angiotensin-Converting Enzyme (ACE) Inhibitory Activity of Fermented Soybean Milk by Lactobacillus casei Strains. Current Microbiology, 73 (2): 214–219. DOI:10.1007/s00284-016-1051-7.
Bhatnagar M, Attri S, Sharma K, Goel G. 2018. Lactobacillus paracasei CD4 as potential indigenous lactic cultures with antioxidative and ACE inhibitory activity in soy milk hydrolysate. Journal of Food Measurement and Characterization, 12(2): 1005–1010. DOI: 10.1007/s11694-017-9715-y
Cabanos C, MatsuokaY., Maruyama N. 2021. Soybean proteins/peptides: A review on their importance, biosynthesis, vacuolar sorting, and accumulation in seeds Peptides, 143. https://doi.org/10.1016/j.peptides.2021.170598
Castro RJ, HH Sato. 2014. Protease from Aspergillus oryzae: Biochemical Characterization and Application as a Potential Biocatalyst for Production of Protein Hydrolysates with Antioxidant Activities. Journal of Food Processing. 2004:1-11. DOI: 10.1155/2014/372352.
Chang CC. Hsu, S. Chou, Y. Chen, F. Huang, Y. Chung, 2009. Effect of fermentation time on the antioxidant activities of tempeh prepared from fermented soybean using Rhizopus oligosporus. Int. J. Food Sci. Technol., 44: 799–806. DOI: 10.1111/j.1365-2621.2009.01907.x.
Chen JR,OkadaT, Muramoto K, Suetsuna K, Yang SC. 2002. Identification of angiotensin I-converting enzyme inhibitory peptides derived from the peptic digest of soybean protein. J. Food Biochem., 26: 543–554. DOI: 10.1111/j.1745-4514.2002.tb00772.x.
Chu WH. 2006. Optimization of extracellular alkaline protease production from species of Bacillus. J Ind Microbiol Biotechnol, 34: 241-245. DOI: 10.1007/s10295-006-0192-2.
Costa EL, José Antonio da Rocha Gontijo, Flavia Maria Netto. 2007. Effect of heat and enzymatic treatment on the antihypertensive activity of whey protein hydrolysates. International Dairy Journal, 17 (6): 0–640. DOI:10.1016/j.idairyj.2006.09.00.
Cushman DW, HS Cheung. 1971. Spectrophotometric assay and properties of the angiotensin-converting enzyme of rabbit lung. Biochemical Pharmacology, 20 (7): 1637-1648. DOI: 10.1016/0006-2952(71)90292-9.
Dhayakaran R, NeethirajanS,Weng X. 2016. Investigation of the antimicrobial activity of soy peptides by developing a high throughput drug screening assay. BiochemBiophys Rep, 6:149–157. DOI: 10.1016/j.bbrep.2016.04.001
Djanta, MKA. 2020. Vegetable Soybean, Edamame: Research, Production, Utilization, and Analysis of Its Adoption in Sub-Saharan Africa. Journal of Horticulture and Forestry, 12 (1): 1-12. DOI:10.5897/JHF2019.0604.
doi: 10.1016/j.foodchem.2015.06.057
doi: 10.1016/j.foodchem.2015.06.057
doi: 10.1016/j.foodchem.2015.06.057
doi: 10.1016/j.foodchem.2015.06.057
Donkor ON, Henriksson A, Vasiljevic T, Shah NP. 2007. Proteolytic activity of dairy lactic acid bacteria and probiotics as determinant of growth and in vitro angiotensin-converting enzyme inhibitory activity in fermented milk. Le Lait, INRA Editions, 87 (1), 21-38. DOI: 10.1051/lait:2006023.
El-Ghaish S, Ahmadova A, Hadji-Sfaxi I., El Mecherfi KE, Bazukyan I., Choiset Y, Rabesona H. 2011. Potential use of lactic acid bacteria for reduction of allergenicity and for longer conservation of fermented foods. Trends in Food Science & Technology, 22 (9), 509–516.DOI:10.1016/j.tifs.2011.05.003.
enzymatically hydrolyzed rice bran protein. Food Chemistry. 192: 156-162.
enzymatically hydrolyzed rice bran protein. Food Chemistry. 192: 156-162.
enzymatically hydrolyzed rice bran protein. Food Chemistry. 192: 156-162.
enzymatically hydrolyzed rice bran protein. Food Chemistry. 192: 156-162.
Gan RY, Shah NP, Wang MF, Lui WY, Corke H. 2017. Lactobacillus plantarum WCFS1 fermentation differentially affects antioxidant capacity and polyphenol content in mung bean (Vigna radiata) and soya bean (Glycine max) milks. Journal of Food Processing and Preservation, 41(1), e12944. DOI: 10.1111/jfpp.12944.
Gibbs BF, Zougman A, Masse R, Mulligan C. 2004. Production and characterization of bioactive peptides from soy hydrolysate and soy-fermented food. Food research international, 37 (2), 123-131. DOI: 10.1016/j.foodres.2003.09.010.
Gobbetti M, P. Ferranti, E. Smacchi, F. Goffredi, F. Addeo. 2000. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Applied and Environmental Microbiology, 66 (9).DOI: 10.1128/AEM.66.9.3898-3904.2000.
Gobbetti M, P. Ferranti, E. Smacchi, F. Goffredi, F. Addeo. 2000. Production of Angiotensin-I-Converting-Enzyme-Inhibitory Peptides in Fermented Milks Started by Lactobacillus delbrueckii subsp. bulgaricus SS1 and Lactococcus lactis subsp. cremoris FT4. Applied and Environmental Microbiology, 66 (9).DOI: 10.1128/AEM.66.9.3898-3904.2000.
Gu Y, Wu J. 2013. LC-MS/MS coupled with QSAR modeling in characterising of angiotensin I-converting enzyme inhibitory peptides from soybean proteins. Food Chem, 141: 2682–2690. DOI: 10.1016/j.foodchem.2013.04.064.
Hazra B, Santanu B, Nripendranath M. 2008. Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine 8(1):63. DOI: 10.1186/1472-6882-8-63
Jungmin Lee, SojeongHeo, Jihoon Choi, Minsoo Kim, Eunji Pyo, Myounghee Lee, Sangick Shin, Jaehwan Lee, Jeuhun Sim dan Do-Won Jeong. 2021. Selection of Lactococcus lactis HY7803 for Glutamic Acid Production Based on Comparative Genomic Analysis. J. Microbiol. Biotechnol: 31 (2): 298 - 303. DOI: 10.4014/jmb.2011.1102.
Kieliszek M, Abdur RK, Muhammad AS, Rana MA. 2021. An overview of chia seed (Salvia hispanica L.) bioactive peptides’ derivation and utilization as an emerging nutraceitical food. Front Biosci (Landmark Ed), 26(9): 643-654. DOI: 10.52586/4973.
Laemmli UK. 1970. Cleavage of structural protein during the assembly of the head of bacteriophage T4. Nature, 277:680-685. DOI: 10.1038/227680a0.
Lammi C, Zanoni C, Arnoldi A. 2015. IAVPGEVA, IAVPTGVA, and LPYP, three peptides from soy glycinin, modulate cholesterol metabolism in HepG2 cells through the activation of the LDLR-SREBP2 pathway. J Funct Foods 14: 469–478. DOI:10.1016/j.jff.2015.02.021.
Long Xingyao, Qin Li, Xin Zhao. 2021. Free radical scavenging ability of soybean milk fermented by Lactobacillus plantarum YS4 isolated from yak yoghurt in vitro. IOP Conf. Series: Earth and Environmental Science 792. DOI:10.1088/1755-1315/792/1/012020.
Lovabyta, N. S., Ari S. N, Jay Jayus. 2020. Bioconversion of isoflavones glycoside to aglycone during edamame (Glycine max) soygurt production using Streptococcus thermophillus FNCC40, Lactobacillus delbrueckii FNCC41, and L. plantarum FNCC26. BIODIVERSITAS. DOI: 10.13057/biodiv/d210412.
Mishra BK, Hati S, Das S, Prajapati JB. 2019. Biofuctional Attributes and Storage Study of Soy Milk Fermented by Lactobacillus rhamnosus and Lactobacillus helveticus. Food Technology and Biotechnology, 57(3): 399-407. DOI: 10.17113/ftb.57.03.19.6103.
Mótyán J, Tóth F, T?ozsér, J. Research applications of proteolytic enzymes in molecular biology. 2013. Biomolecules, 3: 923–942.DOI: 10.3390/biom3040923.
Nakahara, T., Sano, A., Yamaguchi, H., Sugimoto, K., Chikata, H., Kinoshita, E., Uchida, R., 2010. Antihypertensive effect of peptide-enriched soy sauce-like seasoning and identification of its angiotensin I-converting enzyme inhibitory substances. Journal of Agricultural and Food Chemistry, 58: 821–827. DOI: 10.1021/jf903261h.
Nakano D, Ogura K, Miyakoshi M, Ishii F,Kawanishi H, Kurumazuka D, Kwak C, IkemuraK, Takaoka M, Moriguchi S. 2006. Antihypertensive effect of angiotensin I-converting enzyme inhibitory peptides from a sesame protein hydrolysate in pontaneously hypertensive rats. Bioscience, biotechnology, and biochemistry,70 (5),2006:1118–1126.
Nurgrahadi, Ni Nyoman Puspawati, I Made Sugitha. 2020. The Effect Of 3 Different Types Of Lactic Acid Bacteria And Their Combination On The Characteristics Of Soycheese. JurnalItepa, ISSN : 2527-8010.
Nuryana, AAndriani, P Lisdiyanti, Yopi. 2019. Analysis of organic acids produced by lactic acid bacteria. IOP Conf. Series: Earth and Environmental Science 251/012054. DOI:10.1088/1755-1315/251/1/012054.
Quirós A, B. Hernandez-Ledesma, M Ramos, L Amigo, I Recio, 2005. Angiotensin-converting enzyme inhibitory activity of peptides derived from caprine kefir. J. Dairy Sci., 88: 3480-3487.DOI: 10.3168/jds.S0022-0302(05)73032-0.
Ramakrishna V, Ramakrishna RP. 2006. Storage protein degradation in germinating Indian bean (Dolichos lablab L. var. lignosus) seeds. Seed Science and Technology, 34(1), 161-168. DOI: 10.15258/sst.2006.34.1.17.
Ranamukhaarachchi S, Meissner L, Moresoli C. 2013. Production of antioxidant soy protein hydrolysates by sequential ultrafiltration and nanofiltration. J Membr Sci, 429:81–87. DOI:10.1016/j.memsci.2012.10.040.
Rani VU, Pradeep BV. 2015. Antioxidant properties of soy milk fermented with Lactobacillus paracasei KUMBB005. International Journal of Pharmaceutical Sciences Review and Research, 30(1):39-42. ISSN 0976 – 044X
Richter CK, Ann C. Skulas-Ray, Jennifer A. Fleming, Christina J. L. Mukherjea R, Elaine S. Krul and Penny M. Kris-Etherton. 2017. Effects of isoflavone-containing soya protein on ex vivo cholesterol efflux, vascular function and blood markers of CVD risk in adults with moderately elevated blood pressure: a dose–response randomized controlled trial. British Journal of Nutritio, 117: 1403–1413. DOI:10.1017/S000711451700143X.
Ruiz RL, Bleckwedel J, Eugenia O, M Pescuma M, Mozzi F. 2017. “Lactic acid bacteria,” in Industrial Biotechnology: Microorganisms, eds C. Wittmann and J. C. Liao (Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA), 395–451. doi: 10.1002/9783527807796.ch11.
Sachie, Yoshida K,Kumada K,Tsurushiin S,Furusho T,Otobe K. 2009. Antihypertensive Effects of Natto, a Traditional Japanese Fermented Food, in Spontaneously Hypertensive Rats. Food Science and Technology Research, 15(2), 199–202. DOI:10.3136/fstr.15.199.
Shah NP 2000. Probiotic bacteria: selective enumeration and survival in dairy food. J Ethnic Foods 2 (1): 2-7. DOI: 10.3168/jds.S0022-0302(00)74953-8.
Shalaby, E.A., and Shanab, S.M.M. 2013. Antioxidant Compounds, Assays of Determination and Mode of Action. AJPP, 7(10): 535-537.DOI: 10.5897/AJPP2013.3474.
Shimakage A, Shinbo M, Yamada S. 2012. ACE inhibitory substances derived from soy foods. Int J Biol Macromol 12:72–80. DOI:10.14533/jbm.12.72.
Shimizu M. 2004. Food-derived peptides and intestinal functions. Biofactors21:43–48.DOI: 10.1002/biof.552210109
Singh BP, Vij S, Hati S. 2014. Functional significance of bioactive peptides derived from soybean. Peptides, 54, 171–179. DOI: 10.1016/j.peptides.2014.01.022.
Singh BP, Vij S. 2017. Growth and bioactive peptides production potential of Lactobacillus plantarum strain C2 in soy milk: A LC-Ms/MS based revelation for peptides bio-functionality. LWT- Food Science and Technology, 86: 293-301. DOI: 10.1016/j.lwt.2017.08.013.
Singh TP, Malik RK, Kaur G, Renuka. 2014. Safety assessment and evaluation of probiotic potential of Lactobacillus reuteri strains under in vitro conditions. Int J CurrMicrobiol App Sci 3: 335–348.ISSN: 2319-7706.
Stevens. 2016. Isolation and identi?cation of antioxidant peptides from
Stevens. 2016. Isolation and identi?cation of antioxidant peptides from
Stevens. 2016. Isolation and identi?cation of antioxidant peptides from
Stevens. 2016. Isolation and identi?cation of antioxidant peptides from
Suetsuna K, Ukeda H, Ochi H, 2000. Isolation and characterization of free radical scavenging activities peptides derived from casein. J. Nutr. Biochem. 11: 128–131.DOI:10.1016/S0955-2863(99)00083-2.
Suryani I A, Santoso, M Juffrie. 2010. The addition of agar and its effect on the stability and the acceptance of milk tempe in health polytechnic students of Yogyakarta nutrition department. Indonesian Clin. Nutr. J., 7: 85-91.
Szkudzinska K, Smutniak I, Rubaj J, Korol W, Bielecka G. 2017. Method validation for determination of amino acids in feed by UPLC. Accreditation and Quality Assurance, 22(50): 247-252. DOI: 10.1007/s00769-017-1281-9.
Thiansilakul Y, Benjakul S, Shahidi F. 2007. Compositions, functional, and antioxidative of protein hydrolisates prepared from round scad (Decapterusmaruadsi). Journal of Food Chemistry 103: 1385-1394. DOI: 10.1016/j.foodchem.2006.10.055.
Trupti1, J. Undhad, Sujit Das, Divyang Solanki, Dhvany Kinariwala3, SubrotaHati. 2021. Bioactivities and ACE-inhibitory peptides releasing potential of lactic acid bacteria in fermented soy milk. Journal Food Production, Processing and Nutrition. 3 (10). DOI:10.1186/s43014-021-00056-y.
Tsai J S, Lin YS, Pan BS, Chen T J. 2006. Antihypertensive peptides and ?-aminobutyric acid from prozyme 6 facilitated lactic acid bacteria fermentation of soymilk. Process Biochemistry, 41 (6): 1.282-1.288. DOI: 10.1016/j.procbio.2005.12.026.
Tutor JT, Chichioco-Hernandez CL. 2017. Angiotensinconverting enzyme inhibition of fractions from Eleusine indica leaf extracts. Pharmacognosy Journal, 10 (1): 25-28. DOI: 10.5530/pj.2018.1.5.
Vecchi B,Añón MC. 2009. ACE inhibitory tetrapeptides from Amaranthus hypochondriacus 11S globulin, Phytochemistry, 70, 864e870.
Virtanen T, A Pihlanto, S Akkanen, H Korhonen. 2007. Development of antioxidant activity in milk whey during fermentation with lactic acid bacteria, 102 (1): 106–115. DOI:10.1111/j.1365-2672.2006.03072.x.
Wang N, Guowei L, Yonghui S, Yuan Z. 2014. Production of Bioactive Peptides from Soybean Meal by Solid State Fermentation with Lactic Acid Bacteria and Protease. Advance Journal of Food Science and Technology, 6(9): 1080-1085.
Wattanasiritham L, C Theerakulkait, S Wickramasekara, CS Maier, JF Stevens. 2016. Isolation and identification of antioxidant peptides from enzymatically hydrolyzed rice bran protein. Food Chemistry, 192: 156-162. DOI: 10.1016/j.foodchem.2015.06.057.
Wattanasiritham, L., C. Theerakulkait, S. Wickramasekara, C.S. Maier, and J.F.
Wattanasiritham, L., C. Theerakulkait, S. Wickramasekara, C.S. Maier, and J.F.
Wu Q, Jia J, Yan H, Du J, Gui Z. 2015. A Novel Angiotensin-Capital I, Ukrainian Converting Enzyme (ACE) Inhibitory Peptide from Gastrointestinal Protease Hydrolysate of Silkworm Pupa (Bombyx mori) Protein: Biochemical Characterization and Molecular Docking Study. Peptides, 68: 17-24. DOI: 10.1016/j.peptides.2014.07.026.
Yoshikawa M, Fujita H, Matoba N, Takenaka Y, Yamamoto T, Yamauchi R, Tsuruki H, Takahata K .2000. Bioactive peptides derived from food proteins preventing lifestyle-related diseases. Biofactors 12:143–146. DOI: 10.1002/biof.5520120122.
YuRubak, Nuraida L., Iswantini D and Prangdimurti E., 2020. Proteolytic Activity of Indigenous Lactic Acid Bacteria and Angiotensin-I-Converting Enzyme (ACE) Inhibitory Activity in Fermented Soy Milk. Pakistan Journal of Nutrition, 19: 295-30. DOI: 10.3923/pjn.2020.295.302.
Yust MM, Pedroche J, Girón-Calle J, Alaiz M, Millán F, Vioque J. 2003. Production of ACE-Inhibitory Peptides by Digestion of Chickpea Legumin with Alcalase. Food Chem ,81:363–369. DOI:10.1016/S0308-8146(02)00431-4

Most read articles by the same author(s)