Mining and validating novel SSR markers based on coconut (Cocos nucifera L.) whole genome and their use for phylogenetic analysis

##plugins.themes.bootstrap3.article.main##

ANDI NADIA NURUL LATHIFA HATTA
DEWI SUKMA
ISMAIL MASKROMO
SUDARSONO

Abstract

Abstract. Hatta ANNL, Sukma D, Maskromo I, Sudarsono. 2022. Mining and validating novel SSR markers based on coconut (Cocos nucifera L.) whole genome and their use for phylogenetic analysis. Biodiversitas 23: 5122-5131. The coconut (Cocos nucifera L.) genome sequences were available at the chromosome level in 2019, and they can be used to develop the whole genome SSR markers. This study aimed to conduct in silico analysis of the whole coconut genome to mine SSR sequences, design SSR markers distributed across coconut chromosomes, validate the designed primers to generate SSR markers, and use them for the phylogenetic analysis of coconuts. The SSR loci were mined from publicly available coconut genomes. Targeted primers for amplifying 20 dinucleotide SSR loci were selected and used for phylogenetic analysis of coconuts. The SSR mining identified 543,774 dinucleotide repeat motifs across the coconut genome, and most of the dinucleotide SSRs are AG (46.18%) and AT (40.03%) repeats. Primer pairs targeted to amplify 876 SSR loci and distributed in 16 coconut chromosomes were successfully designed and deposited in a public data repository for public access. The 237 SSR primer loci were novel and could generate new SSR markers. Among 20 selected and tested primers, 18 produced SSR markers, and 15 pairs yielded polymorphic markers when used to evaluate 25 coconut accessions. The analysis showed that the designed SSR primers were informative for evaluating coconut genetic diversity and phylogenetic analysis.

##plugins.themes.bootstrap3.article.details##

References
Alinne ONA, Carlos DOA, Pedro HADS, Helaine CCR, Marcela SBB, Fernanda ASA, Semíramis RRR, Luís AM, Lalith P, Wilson MA, Messias GP. 2018. Selection of legitimate dwarf coconut hybrid seedlings using DNA fingerprinting. Crop Breed Appl Biotech 18 (4): 409-416. DOI: 10.1590/1984-70332018v18n4a60.
Babu KB, Mary RKL, Sahu S, Mathur RK, Kumar NP, Ravichandran G, Anitha P, Bhagya HP. 2019. Development and validation of whole genome-wide and genic microsatellite markers in oil palm (Elaeis guineensis Jacq.): First microsatellite database (OpSatdb). Sci Rep 9: 1899-1908. DOI: 10.1038/s41598-018-37737-7.
Bai B, Wang L, Lee M, Zhang Y, Alfiko RY, Ye BQ, Wan ZY, Lim CH, Suwanto A, Chua NH, Yue GH. 2017. Genome-wide identification of markers for selecting higher oil content in oil palm. BMC Plant Biol 17: 93. DOI: 10.1186/s12870-017-1045-z.
Brody JR, Kern SE. 2004. History and principles of conductive media for standard DNA electrophoresis. Anal Biochem 333 (1): 1-13. DOI: 10.1016/j.ab.2004.05.054.
Caro RES, Cagayan J, Gardoce RR, Manohar ANC, Salinas AOC, Rivera RL, Lantican DV, Galvez HF, Reano CE. 2022. Mining and validation of novel simple sequence repeat (SSR) markers derived from coconut (Cocos nucifera L.) genome assembly. J Genet Eng Biotechnol 20: 71. DOI: 10.1186/s43141-022-00354-z.
Castellana S, Ranzino L, Beritognolo I, Cherubini M, Luneia R, Villani F, Mattioni C. 2020. Genetic characterization and molecular fingerprint of traditional Umbrian tomato (Solanum lycopersicum L.) landraces through SSR markers and application for varietal identification. Genet Resour Crop Evol 67: 1807-1812. DOI: 10.1007/s10722-020-00942-3.
Geethanjali S, Anitha RJ, Rajakumar D, Kadirvel P, Viswanathan PL. 2018. Genetic diversity, population structure and association analysis in coconut (Cocos nucifera L.) germplasm using SSR markers. Plant Genet Resour 16: 156-168. DOI: 10.1017/S1479262117000119.
Hao L, Zhai Y, Zhang G, Lu D, Huang H. 2020. Efficient fingerprinting of the tetraploid Salix psammophila using SSR markers. Forests 11: 176. DOI: 10.3390/f11020176.
Haque MS, Saha NR, Islam MT, Islam MM, Kwon SJ, Roy SK, Woo SH. 2021. Screening for drought tolerance in wheat genotypes by morphological and SSR markers. J Crop Sci Biotechnol 24: 27-39. DOI: 10.1007/s12892-020-00036-7.
He Z, Zhang C, Liu W, Lin Q, Wei T, Aljohi HA, Chen WH, Hu S. 2017. DRDB: An online date palm genomic resource database. Front Plant Sci 8: 1889-1898. DOI: 10.3389/fpls.2017.01889.
Hegde S, Saini A, Hegde HV, Kholkute SD, Roy S. 2018. Molecular identification of Saraca asoca from its substituents and adulterants. 3 Biotech 8: 161. DOI: 10.1007/s13205-018-1175-5.
Huda MN, Hasan M, Abdullah HM, Sarker U. 2019. Spatial distribution and genetic diversity of wild date palm (Phoenix sylvestris) growing in coastal Bangladesh. Tree Genet Genomes 15: 3. DOI: 10.1007/s11295-018-1310-9.
Huo Y, Zhao Y, Xu L, Yi H, Zhang Y, Jia X, Zhao H, Zhao J, Wang F. 2021. An integrated strategy for target SSR genotyping with toleration of nucleotide variations in the SSRs and flanking regions. BMC Bioinform 22: 429. DOI: 10.1186/s12859-021-04351-w.
Indonesian Agriculture Ministry. 2019. "Hengniu" VUB coconut hybrid assembled by IPRI. https://perkebunan.litbang.pertanian.go.id/hengniu-vub-kelapa-hibrida-hasil-rakitan-balit-palma/. [accessed on 28 May 2022].
Indrachapa MTN, Meegahakumbura MK, Dasanayaka PN. 2019. SSR markers revealed genetic diversity of king coconut (Cocos nucifera L.) in Sri Lanka. Proceedings of 24th International Forestry and Environment Symposium. University of Sri Jayewardenepura. DOI: 10.31357/fesympo.v24i0.4212.
Kadri NE, Mimoun MB, Hormaza JI. 2019. Genetic diversity of Tunisian male date palm (Phoenix dactylifera L.) genotypes using morphological descriptors and molecular markers. Sci Hortic 253: 24-34. DOI: 10.1016/j.scienta.2019.04.026.
Kamaral LCJ, Dassanayaka PN, Perera KLNS, Perera SACN. 2016. SSR markers reveal the population structure of Sri Lanka yellow dwarf coconuts (Cocos nucifera L.). Tree Genet Genomes 12: 116. DOI: 10.1007/s11295-016-1076-x.
Kamaral LCJ, Perera S, Perera K, Dassanayaka PN. 2017. Characterization of Sri Lanka yellow dwarf coconut (Cocos nucifera L.) by DNA fingerprinting with SSR markers. J Nat Sci Found 45: 405. DOI: 10.4038/jnsfsr.v45i4.8234.
Kandoliya UK, Joshi AK, Mori DS, Marviya GV, Golakiya BA. 2018. Genetic diversity analysis of coconut (Cocos nucifera L.) genotypes and hybrids using molecular marker. Indian J Agri Biochem 31 (1): 25-32. DOI: 10.5958/0974-4479.2018.00004.7.
Khouane AC, Aziz A, Halima B. 2020. Molecular identification of date palm (Phoenix dactylifera L.) "Deglet Noor" pollinator through analysis of genetic diversity of Algerian male and female ecotypes using SSRs markers. Sci Hortic 274: 35-46. DOI: 10.1016/j.scienta.2020.109668.
Kumar KD, Arumuganathan T, Thomas RJ, Niral V, Karun A, Chowdappa P. 2018. A cost-effective ground pollination system for hybridization in tall coconut palms. Curr Sci 114 (5): 964-970. DOI: jstor.org/stable/26495188.
Lantican DV, Susan RS, Alma OC, Roanne RG, Lukas AM, Hayde FG. 2019. De novo genome sequence assembly of dwarf coconut (Cocos nucifera L. Catigan green dwarf) provides insights into genomic variation between coconut types and related palm species. G3-Genes Genom Genet 9: 2377-2393. DOI: 10.1534/g3.119.400215.
Larekeng SH, Maskromo I, Purwito A, Nurhayati AM, Sudarsono S. 2015. Pollen dispersal and pollination patterns studies in Pati kopyor coconut using molecular markers. Intl J Coconut Res Dev 31 (1): 46-60. DOI: 10.37833/cord.v31i1.70.
Larekeng SH, Purwito A, Mattjik NA, Sudarsono S. 2018. Microsatellite and SNAP markers used for evaluating pollen dispersal on Pati tall coconuts and Xenia effect on the production of 'Kopyor' fruits. IOP Conf Ser Earth Environ Sci 157: 012042. DOI: 10.1088/1755-1315/157/1/012042.
Loiola CM, Azevedo AON, Diniz LEC, Aragao WM, Azevedo CDO, Santos PHAD, Ramos HCC, Pereira MG, Ramos SRR. 2016. Genetic relationships among tall coconut palm (Cocos nucifera L.) accessions of the international coconut genebank for Latin America and the Caribbean (ICG-LAC) evaluated using microsatellite markers (SSRs). PLoS ONE 11: e0151309. DOI: 10.1371/journal.pone.0151309.
Mahayu WM, Manambangtua AP, Wungkana J, Taryono. 2022. Specific alleles as individual molecular markers and its association for sustainable breeding programs in coconut palm. IOP Conf Ser Earth Environ Sci 974: 012008. DOI: 10.1088/1755-1315/974/1/012008/meta.
Mangiola S, Papenfuss AT. 2020. Tidy Heatmap: An R package for modular heatmap production based on tidy principles. J Open Source Software 5 (52): 2472. DOI: 10.21105/joss.02472.
Muñoz-Pérez JM, Cañas GP, López L, Arias T. 2022. Genome-wide diversity analysis to infer population structure and linkage disequilibrium among Colombian coconut germplasm. Sci Rep 12: 2958. DOI: 10.1038/s41598-022-07013-w.
Naeem A, Khan SH, Khan IA, Khan AA. 2018. SSR-based genetic diversity of date palm in Makran (Pakistan). Pak J Agri Sci 55 (4): 863-873. DOI: 10.21162/PAKJAS/18.6838.
Nartvaranant P. 2019. Analysis of markers of the genetic variants of (Nam Hom coconut (Cocos nucifera L.) grown in western Thailand. Interdiscip Res Rev 14 (1): 12-20. DOI: ph02.tci-thaijo.org/index.php/jtir/article/view/176694.
Novarianto H, Mawardi S, Tulalo MA. 2022. The Bido variety is an essential genetic material for coconut breeding. IOP Conf Series Earth Environ Sci 974: 012056. DOI: 10.1088/1755-1315/974/1/012056.
Nugroho YA, Tanjung ZA, Yono D, Mulyana AS, Simbolon M, Ardi AS, Yong YY, Utomo C, Liwang T. 2019. Genome-wide SNP discovery and analysis of genetic diversity in oil palm using double digest restriction site associated DNA sequencing. IOP Conf Ser Earth Environ Sci 293: 012041. DOI: 10.1088/1755-1315/293/1/012041.
Oday A, Marcone MF. 2019. Coconut – the tree of life – improvement by biotechnology. In: Murray M-Y (eds). Comprehensive Biotechnology (Third Edition). Pergamon Press, Oxford. DOI: 10.1016/B978-0-444-64046-8.00464-X.
Okoye MN, Singh R, Uguru MI, Bakoumé C. 2020. Application of microsatellite markers for hybrid verification and genetic analysis of oil palm (Elaeis guineensis Jacq.). Niger J Biotechnol 37 (2): 1-12. DOI: 10.4314/njb.v37i2.1.
Perera L, Baudouin L, Mackay I. 2016. SSR markers indicate a common origin of self-pollinating dwarf coconut in South-East Asia under domestication. Sci Hortic 211: 255-262. DOI: 10.1016/j.scienta.2016.08.028.
Perera SACN. 2020. Genetic improvement for sustainability of coconut production: The Sri Lankan experience. In: Marambe B, Weerahewa J, Dandeniya W (eds). Agricultural Research for Sustainable Food Systems in Sri Lanka. Springer, Singapore. DOI: 10.1007/978-981-15-2152-2_7.
Pesik A, Efendi D, Novarianto H, Dinarti D, Sudarsono S. 2016. The Genetic Diversity of Indonesian Coconut Germplasm and Determining the Identity of Coconut Hybrid Based on Molecular Markers. [Dissertation]. Institut Pertanian Bogor, Bogor. [Indonesian].
Preethi P, Rahman S, Naganeeswaran S, Sabana AA, Gangaraj KP, Jerard BA, Niral V, Rajesh MK. 2020. Development of EST-SSR markers for genetic diversity analysis in coconut (Cocos nucifera L.). Mol Biol Rep 47: 9385-9397. DOI: 10.1007/s11033-020-05981-8.
Purwoko D, Cartealy IC, Tajuddin T, Dinarti D, Sudarsono S. 2019. SSR identification and marker development for sago palm based on NGS genome data. Breed Sci 69 (1): 1-10. DOI: 10.1270/jsbbs.18061.
Rahayu MS, Setiawan A, Maskromo I, Purwito A, Sudarsono S. 2022. Genetic diversity analysis of Puan Kalianda kopyor coconuts (Cocos nucifera L.) from South Lampung, Indonesia, based on SSR markers. Biodiversitas 23 (1): 205-211. DOI: 10.13057/biodiv/d230126.
Rahmawati A, Dinarti D, Maskromo I, Sudarsono S. 2021. Comparative Genomics and Phylogenetic Analysis of Indonesian Coconuts with Other Important Palm Species based on Chloroplast Genome. [Thesis]. IPB University, Bogor. [Indonesian].
Rajesh MK, Jerard BA, Preethi P, Thomas RJ, Karun A. 2014. Application of RAPD markers in hybrid verification in coconut. Crop Breed Appl Biotech 14: 36-41. DOI: 10.1590/S1984-70332014000100006.
Riangwong K, Wanchana S, Aesomnuk W, Saensuk C, Nubankoh P, Ruanjaichon V, Kraithong T, Toojinda T, Vanavichit A, Arikit S. 2020. Mining and validation of novel genotyping-by-sequencing (GBS)-based simple sequence repeats (SSRs) and their application for the estimation of the genetic diversity and population structure of coconuts (Cocos nucifera L.) in Thailand. Hortic Res 7: 156. DOI: 10.1038/s41438-020-00374-1.
Rinawati DY, Reflinur, Dinarti D, Sudarsono. 2021. Genetic diversity of sugar palm (Arenga pinnata) derived from nine regions in Indonesia based on SSR markers. Biodiversitas 22 (9): 3749-3755. DOI: 10.13057/biodiv/d220919.
Saha D, Rana RS, Das S, Datta S, Mitra J, Cloutier SJ, You FM. 2019. Genome-wide regulatory gene-derived SSRs reveal genetic differentiation and population structure in fiber flax genotypes. J Appl Genet. 60: 13-25. DOI: 10.1007/s13353-018-0476-z.
Siregar LAM, Damayanti R, Hanafiah DS. 2019. Variability of coconut phenotype based on morphology and content of fatty acids in Asahan District, North Sumatra, Indonesia. Biodiversitas 20 (11): 3413-3421. DOI: 10.13057/biodiv/d201139.
Tan LQ, Liu QL, Zhou B, Yang CJ, Zou X, Yu YY, Wang Y, Hu JH, Zou Y, Chen SX, Li PW, Tang Q. 2019. Paternity analysis using SSR markers reveals that the anthocyanin-rich tea cultivar "Ziyan" is self-compatible. Sci Hortic 245: 258-262. DOI: 10.1016/j.scienta.2018.10.034.
Tripathi S, Singh SK, Srivashtav V, Khaire AR, Vennela P, Singh DK. 2020. Molecular diversity analysis in rice (Oryza sativa L.) using SSR markers. Electron J Plant Breed 11 (3): 776-782. DOI: 10.37992/2020.1103.128.
Vieira MLC, Santini L, Diniz AL, Munhoz C, De F. 2016. Microsatellite markers: What they mean and why they are so useful. Genet Mol Biol 39: 312-328. DOI: 10.1590/1678-4685-GMB-2016-0027.
Wang Y, Ihase OL, Yin MH, Peng S, Zhang D, Li D, Emoghene BO, Iserhienrhien A. 2020. Development of sex-linked SSR marker in the genus Phoenix and validation in P. dactylifera. Crop Sci 60 (5): 2452-2466. DOI: 10.1002/csc2.20187.
Wu Y, Yang Y, Qadri R, Iqbal A, Li J, Fan H, Wu Y. 2019. Development of SSR markers for coconut (Cocos nucifera L.) by selectively amplified microsatellite (SAM) and its applications. Trop Plant Biol 12: 32-43. DOI: 10.1007/s12042-018-9215-1.
Xia X, Luan LL, Qin G, Yu LF, Wang ZW, Dong WC, Song Y, Qiao Y, Zhang XS, Sang YL, Yang L. 2017. Genome-wide analysis of SSR and ILP markers in trees: diversity profiling, alternate distribution, and applications in duplication. Sci Rep 7: 17902. DOI: 10.1038/s41598-017-17203-6.
Xiao Y, Xia W, Ma J, Mason AS, Fan H, Shi P, Lei X, Ma Z, Peng M. 2016. Genome-wide identi?cation and transferability of microsatellite markers between Palmae species. Front Plant Sci 7: 1578. DOI: 10.3389/fpls.2016.01578.
Zhong Y, Cheng Y, Ruan M, Ye Q, Wang R, Yao Z, Zhou G, Liu J, Yu J, Wan H. 2021. High-throughput SSR marker development and the analysis of genetic diversity in Capsicum frutescens. Horticulturae 7 (7): 187. DOI: 10.3390/horticulturae7070187.
Zhou L, Yarra R, Cao H. 2020a. SSR-based association mapping analysis for fatty acid content in coconut flesh and exploration of the elite alleles in Cocos nucifera L. Curr Plant Biol 21: 100141. DOI: 10.1016/j.cpb.2020.100141.
Zhou L, Yarra R, Zhao Z, Jin L, Cao H. 2020b. Development of SSR markers based on transcriptome data and association mapping analysis for fruit shell thickness associated traits in oil palm (Elaeis guineensis Jacq.). 3 Biotech 10: 280. DOI: 10.1007/s13205-020-02269-3.

Most read articles by the same author(s)

1 2 3 4 > >>