Bacteria communities of coffee plant rhizosphere and their potency as plant growth promoting

##plugins.themes.bootstrap3.article.main##

SUHARJONO
ERVINDA YULIATIN

Abstract

Abstract. Suharjono, Yuliatin E. 2022. Bacteria communities of coffee plant rhizosphere and their potency as plant growth promoting. Biodiversitas 23: 5822-5834. This study aimed to investigate the soil bacteria communities of the coffee rhizosphere and evaluate the potency in supporting coffee plant growth. The soil was collected from the Coffea canephora and Coffea arabica in Malang, East Java. The bacterial genomic DNA was extracted by FastDNA Spin kit while the Illumina platform analyzed the total gDNA. Other samples were isolated using the serial dilution method on Tryptic Soy Agar, Pikovskaya Agar, and Nitrogen-free-Bromothymol Blue Agar medium to isolate IAA-producing, phosphate-solubilizing, and nitrogen-fixing bacteria, respectively. The selected bacteria isolates were identified based on 16S rDNA sequencing. As a result, the Proteobacteria showed dominance at the phyla level, and Bradyrhizobium elkanii was the most abundant species with a not significant different proportion between Robusta and Arabica soil. The quantifying method of the selected isolate showed the maximum concentration, such as S1.6.3.2 isolate producing IAA-hormone at 104.46 µg/mL, W3.5 isolate solubilizing the phosphate at 4.5 µg/mL, and W1.2 isolate fixing the ammonia at 21.54 µg/mL. Those potential isolates, S1.6.3.2, W3.5, and W1.2, were identified as Bacillus subtilis DSM 10, Pseudomonas putida S18, and Bacillus methylotropicus SY2, respectively. Further research shows that those bacteria consortiums can be a candidate as biofertilizers due to helping soil health stimulation and promoting coffee growth.

##plugins.themes.bootstrap3.article.details##

References
Aarab S OFMMLABMAA. 2015. Isolation and screening of bacteria from rhizospheric soils of rice fields in Northwestern Morocco for different plant growth promotion (PGP) activities: An in vitro study. Int J Curr Microbiol App Sci . 4(1):260–269.
Ahemad M, Kibret M. 2014. Mechanisms and applications of plant growth promoting rhizobacteria: Current perspective. Journal of King Saud University - Science. 26(1):1–20. doi:https://doi.org/10.1016/j.jksus.2013.05.001. https://www.sciencedirect.com/science/article/pii/S1018364713000293.
Alcarraz Curi M. HJV. JIJ. 2019. Cepas bacterianas nativas con actividades promotoras del crecimiento vegetal aisladas de la rizofera de Coffeea spp. En Pichanaqui, Peru. Biotecnol Veg.:285–295.
Bagyaraj DJ, Thilagar G, Ravisha C, Kushalappa CG, Krishnamurthy KN, Vaast P. 2015. Below ground microbial diversity as influenced by coffee agroforestry systems in the Western Ghats, India. Agriculture, Ecosystems & Environment. 202:198–202. doi:https://doi.org/10.1016/j.agee.2015.01.015. https://www.sciencedirect.com/science/article/pii/S016788091500016X.
Bhattacharyya PN, Jha DK. 2012. Plant growth-promoting rhizobacteria (PGPR): Emergence in agriculture. World Journal of Microbiology and Biotechnology. 28(4):1327–1350. doi:10.1007/s11274-011-0979-9.
Bric JM, Bostock RM, Silverstone SE. 1991. Rapid In Situ Assay for Indoleacetic Acid Production by Bacteria Immobilized on a Nitrocellulose Membrane. Applied and Environmental Microbiology. 57(2):535–538. doi:10.1128/aem.57.2.535-538.1991.
Caldwell AC, Silva LCF, da Silva CC, Ouverney CC. 2015. Prokaryotic Diversity in the Rhizosphere of Organic, Intensive, and Transitional Coffee Farms in Brazil. PLOS ONE. 10(6):e0106355. doi:10.1371/journal.pone.0106355.
Chaudhry WN, Concepción-Acevedo J, Park T, Andleeb S, Bull JJ, Levin BR. 2017. Synergy and Order Effects of Antibiotics and Phages in Killing Pseudomonas aeruginosa Biofilms. PLOS ONE. 12(1):e0168615. doi:10.1371/journal.pone.0168615.
Chauhan A, Balgir PP, Shirkot CK. 2014. Characterization of Aneurinibacillus aneurinilyticus Strain CKMV1 as a Plant Growth Promoting Rhizobacteria. International Journal of Agriculture, Environment and Biotechnology. 7(1):37. doi:10.5958/j.2230-732X.7.1.006.
Crovadore J, Calmin G, Chablais R, Cochard B, Schulz T, Lefort F. 2016. Whole-Genome Sequence of Bradyrhizobium elkanii Strain UASWS1016, a Potential Symbiotic Biofertilizer for Agriculture. Genome Announcements. 4(5). doi:10.1128/genomeA.01095-16.
Dahan O, Babad A, Lazarovitch N, Russak EE, Kurtzman D. 2014. Nitrate leaching from intensive organic farms to groundwater. Hydrology and Earth System Sciences. 18(1):333–341. doi:10.5194/hess-18-333-2014.
Fadhilah Israwan R, Ardyati T, Biologi J, Matematika dan Ilmu Pengetahuan Alam F. 2015. Eksplorasi Bakteri Pemfiksasi Nitrogen Non Simbiotik Penghasil IAA dan Pelarut Fosfat Asal Rhizosfer Tanaman Apel Kota Batu, Jawa Timur.
Fierer N, Leff JW, Adams BJ, Nielsen UN, Bates ST, Lauber CL, Owens S, Gilbert JA, Wall DH, Caporaso JG. 2012. Cross-biome metagenomic analyses of soil microbial communities and their functional attributes. Proceedings of the National Academy of Sciences. 109(52):21390–21395. doi:10.1073/pnas.1215210110.
Fitriatin BN, Widyasmara A, Arifin M, Devnita R, Yuniarti A, Haryanto R. 2017. Isolation and Screening of Phosphate Solubilizing Bacteria from Rhizosphere of Tea (Camellia Sinensis L.) on Andisols. International Journal of Sustainable Agricultural Research. 4(4):95–100. doi:10.18488/journal.70.2017.44.95.100.
Ge B, Liu B, Nwet TT, Zhao W, Shi L, Zhang K. 2016. Bacillus methylotrophicus Strain NKG-1, Isolated from Changbai Mountain, China, Has Potential Applications as a Biofertilizer or Biocontrol Agent. PLOS ONE. 11(11):e0166079. doi:10.1371/journal.pone.0166079.
Hanh TTH MW. 2017. Correlation of growth and IAA production of Lysinibacillus Fusiformis UD 270. Journal of Applied and Physical Sciences. 3(3). doi:10.20474/japs-3.3.3.
Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A. 2015. The Hidden World within Plants: Ecological and Evolutionary Considerations for Defining Functioning of Microbial Endophytes. Microbiology and Molecular Biology Reviews. 79(3):293–320. doi:10.1128/MMBR.00050-14.
Jacquiod S, Puga-Freitas R, Spor A, Mounier A, Monard C, Mougel C, Philippot L, Blouin M. 2020. A core microbiota of the plant-earthworm interaction conserved across soils. Soil Biology and Biochemistry. 144:107754. doi:10.1016/j.soilbio.2020.107754.
K. Dey AG, P.S. Medda NB, A. Ghosh AND. 2017. Reproductive Behaviour of Lemon (Citrus limon Burm.) Affected by Different Pruning Intensities and Integrated Nutrient Management under Various Growing Season. International Journal of Current Microbiology and Applied Sciences. 6(4):606–614. doi:10.20546/ijcmas.2017.604.073.
Khalid A, Arshad M, Zahir ZA. 2004. Screening plant growth-promoting rhizobacteria for improving growth and yield of wheat. Journal of Applied Microbiology. 96(3):473–480. doi:10.1046/j.1365-2672.2003.02161.x.
Klindworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glöckner FO. 2013. Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Research. 41(1):1–11. doi:10.1093/nar/gks808.
Kuramae EE, Yergeau E, Wong LC, Pijl AS, Veen JA, Kowalchuk GA. 2012. Soil characteristics more strongly influence soil bacterial communities than land-use type. FEMS Microbiology Ecology. 79(1):12–24. doi:10.1111/j.1574-6941.2011.01192.x.
Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniya ML. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: A review. Ecological Engineering. 107:8–32. doi:10.1016/j.ecoleng.2017.06.058.
Muleta D, Assefa F, Börjesson E, Granhall U. 2013. Phosphate-solubilising rhizobacteria associated with Coffea arabica L. in natural coffee forests of southwestern Ethiopia. Journal of the Saudi Society of Agricultural Sciences. 12(1):73–84. doi:10.1016/j.jssas.2012.07.002.
Noha IO, Shixue Y. 2018. Isolation and characterization of pea plant (Pisum sativum L.) growth-promoting Rhizobacteria. African Journal of Microbiology Research. 12(34):820–828. doi:10.5897/AJMR2018.8859.
Numan M, Bashir S, Khan Y, Mumtaz R, Shinwari ZK, Khan AL, Khan A, AL-Harrasi A. 2018. Plant growth promoting bacteria as an alternative strategy for salt tolerance in plants: A review. Microbiological Research. 209:21–32. doi:10.1016/j.micres.2018.02.003.
Organizatin IC. 2014. World coffee trade (1963 – 2013): A review of the markets, challenges and opportunities facing the sector. London, United Kingdom. www.ico.org.
Pandey A, Trivedi P, Kumar B, Palni LMS. 2006. Characterization of a Phosphate Solubilizing and Antagonistic Strain of Pseudomonas putida (B0) Isolated from a Sub-Alpine Location in the Indian Central Himalaya. Current Microbiology. 53(2):102–107. doi:10.1007/s00284-006-4590-5.
Pérez-Flores P, Valencia-Cantero E, Altamirano-Hernández J, Pelagio-Flores R, López-Bucio J, García-Juárez P, Macías-Rodríguez L. 2017. Bacillus methylotrophicus M4-96 isolated from maize (Zea mays) rhizoplane increases growth and auxin content in Arabidopsis thaliana via emission of volatiles. Protoplasma. 254(6):2201–2213. doi:10.1007/s00709-017-1109-9.
Rahma AF, Arisoesilaningsih E. 2017. Threatening of Invasive Alien Species (IAS) on Vegetation Structure and Aerial Arthropod Diversity in Protection Area of UB Forest. Jurnal Pembangunan dan Alam Lestari. 8(2):89–92. doi:10.21776/ub.jpal.2017.008.02.05.
Reeve W, van Berkum P, Ardley J, Tian R, Gollagher M, Marinova D, Elia P, Reddy TBK, Pillay M, Varghese N, et al. 2017. High-quality permanent draft genome sequence of the Bradyrhizobium elkanii type strain USDA 76T, isolated from Glycine max (L.) Merr. Standards in Genomic Sciences. 12(1):26. doi:10.1186/s40793-017-0238-2.
Schlaeppi K, Bulgarelli D. 2015. The Plant Microbiome at Work. Molecular Plant-Microbe Interactions®. 28(3):212–217. doi:10.1094/MPMI-10-14-0334-FI.
Setia IN, Suharjono, Nurani Y. 2018 Sep. Plant growth-promoting properties of free-living diazotrophic rhizobacteria from Tangerine (Citrus reticulate L.) var Batu 55. Malaysian Journal of Microbiology. doi:10.21161/mjm.114117.
Shi L-L, Mortimer PE, Ferry Slik JW, Zou X-M, Xu J, Feng W-T, Qiao L. 2014. Variation in forest soil fungal diversity along a latitudinal gradient. Fungal Diversity. 64(1):305–315. doi:10.1007/s13225-013-0270-5.
Sprent JI, Ardley J, James EK. 2017. Biogeography of nodulated legumes and their nitrogen?fixing symbionts. New Phytologist. 215(1):40–56. doi:10.1111/nph.14474.
Tallapragada P, Dikshit R, Seshagiri S. Isolation and optimization of IAA producing Burkholderia seminalis and its effect on seedlings of tomato. http://www.sjst.psu.ac.th.
Wallenstein MD, Hall EK. 2012. A trait-based framework for predicting when and where microbial adaptation to climate change will affect ecosystem functioning. Biogeochemistry. 109(1–3):35–47. doi:10.1007/s10533-011-9641-8.
Wang HH, Chu HL, Dou Q, Xie QZ, Tang M, Sung CK, Wang CY. 2018. Phosphorus and Nitrogen Drive the Seasonal Dynamics of Bacterial Communities in Pinus Forest Rhizospheric Soil of the Qinling Mountains. Frontiers in Microbiology. 9. doi:10.3389/fmicb.2018.01930.
Yousef NMH. 2018. Capability of Plant Growth-Promoting Rhizobacteria (PGPR) for producing indole acetic acid (IAA) under extreme conditions. European Journal of Biological Research Research Article European Journal of Biological Research. 8(4):174–182. doi:10.5281/zenodo.1412796. http://dx.doi.org/10.5281/zenodo.1412796.
Zhao J, Lin L, Yang K, Liu Q, Qian G. 2015. Influences of land use on water quality in a reticular river network area: A case study in Shanghai, China. Landscape and Urban Planning. 137:20–29. doi:10.1016/j.landurbplan.2014.12.010.