Short communication: Macrofungi assemblage in Rawa Bento Forest, Kerinci Seblat National Park, Indonesia

##plugins.themes.bootstrap3.article.main##

IRDA SAYUTI
ZULFARINA
ZATRI RAHAYU

Abstract

Abstract. Sayuti I, Zulfarina, Rahayu Z. 2023. Short communication: Macrofungi assemblage in Rawa Bento Forest, Kerinci Seblat National Park, Indonesia. Biodiversitas 24: 1224-1230. This study deals with macrofungi in the peat swamp forest of Rawa Bento, Kerinci Seblat National Park, Indonesia and their utilization. The forest region is dominated by banto grass or swamp rice grass (Leersia hexandra) with high humidity and rainfall which favors macrofungi growth and fruiting body formation. Furthermore, the sampling sites were chosen based on the accessibility of the area and the conditions for occurrence of macrofungi. About 36 macrofungi species were documented from 29 genera and 20 families, where 33 species belonged to Basidiomycota and only 2 species were Ascomycota. The dominant fungal group in the forest region was the Polypores and wood-inhabiting macrofungi. Eleven species were recognized as edible including Auricularia auricula-judae, Cantharellus subalbidus, Cookeina tricholoma, Dacryopinax spathularia, Galiella rufa, Ganoderma lucidum, Pleurotus cornucopiae, Pluteus fenzlii, Lentinus arcularius, Psilocybe cubensis, and Schizophyllum commune. Based on the scientific evidence, the majority of macrofungal species have medicinal properties except Pluteus fenzlii. The result provided preliminary information regarding use of macrofungi by the surrounding population, as well as knowledge development for researchers in the food and medical fields.

##plugins.themes.bootstrap3.article.details##

References
Arini DID, Christita M, Kinho J. 2019. The macrofungi diversity and their potential utilization in Tangale Nature Reserve Gorontalo Province. Berita Biologi 18: 109-115. DOI: 10.14203/beritabiologi.v18i1.3379.
Abrego N. 2021. Wood-inhabiting fungal communities: Opportunities for integration of empirical and theoretical community ecology. Fung Ecol 59: 101112. DOI: 10.1016/j.funeco.2021.101112.
Arora D. 1986. Mushrooms demystified: A Comprehensive guide to the fleshy fungi. Ten Speed Press, Berkeley.
Barreto C, Lindo Z. 2018. Drivers of decomposition and the detrital invertebrate community differ across a hummock-hollow microtopology in Boreal peatlands. Ecoscience 25: 39-48. DOI: 10.1080/11956860.2017.1412282.
Cerletti C, Esposito S, Iacoviello L. 2021. Edible mushrooms and beta-glucans: Impacts on human health. Nutrients 13: 2195. DOI: 10.3390/nu13072195.
Chen GC, Zhu QF, Long XM, Lu Q, Li KY, Chen Q, Zhou M, Liao SG, Xu GB. 2021. Antibacterial activities of the chemical constituents of Schizophyllum commune MST7-3 collected from coal area. Nat Prod Res 2: 1-10. DOI: 10.1080/14786419.2021.2010075.
Cor D, Knez Z, Hrncic MK. 2018. Antitumour, antimicrobial, antioxidant and antiacetylcholinesterase effect of Ganoderma lucidum terpenoids and polysaccharides: A Review. Molecules 23: 649. DOI: 10.3390/molecules2303064.
Dighton J, White J. 2017. The Fungal Community: its Organization and Role in the Ecosystem. CRC Press, USA.
Hobbs CR. 2005. The chemistry, nutritional value, immunopharmacology, and safety of the traditional food of medicinal split-gill fugus Schizophyllum commune Fr.:Fr. (Schizophyllaceae). A Literature review. Int J Med Mushrooms 7: 127-139.
Izati N, Zhara FA, Pertiwi RAP, Pranoto MDP, Widiyanti R, Sugiyarto. 2020. Diversity of macrofungi and their potential utilization in Mount Picis Nature Reserve and Mount Sigogor Nature Reserve, East Java. Pros Sem Nas Masy Biodiv Indon 6: 484-492. DOI: 10.13057/psnmbi/m060102.
Karyadi H, Pratiwi DI, Danis EH, Suyanto DP, Hendrayadi. 2018. Taman Nasional Kerinci Seblat. Balai Besar Taman Nasional Kerinci Seblat, Jambi. [Indonesian]
Kopcke B, Johansson M, Sterner O, Anke H. 2002. Biologically active secondary metabolites from the ascomycete A111-95. 1. Production, isolation and biological activities. J Antibiot (Tokyo) 55: 36-40. DOI: 10.7164/antibiotics.55.36.
Kumar A, Kumar M, Ali S, Lal SB, Sinha MP. 2019a. Anti-pathogenic efficacy of Indian edible macrofungi Dacryopinax spathularia (Schwein) and Schizophyllum commune (Fries) against some human pathogenic bacteriae. J Emerg Technol Innov Res 6: 695-704.
Kumar A, Kumar M, Sinha MP. 2019b. Hepatoprotective efficacy of edible macrofungi Dacryopinax spathularia (Schwein) and Schizophyllum commune (Fries) against Carbon tetrachloride induced hepatotoxicity in albino Wistar rats. J Appl Nat Sci 11: 62-65. DOI: 10.31018/jans.v11i1.1959.
Kumar A, Kumar M, Dandapat S, Ranjan R, Sinha MP. 2019c. Improvement of renal profile in Gentamicin-induced nephrotoxicity in albino wistar rats by edible macrofungi Dacryopinax spathularia and Schizophyllum commune. J Appl Nat Sci 11: 436-439. DOI: 10.31018/jans.v11i2.2088.
Kumar A, Kumar M, Ranjan R, Sinha MP. 2020. Improvement in lipid profile and thyroid hormone profile in hyperlipidemic rats by edible macrofungi Dacryopinax spathularia and Schizophyllum commune. Int J Pure Appl Zool 8: 1-6.
Lee SR, Lee D, Lee HJ, Noh HJ, Jung K, Kang KS, Kim KH. 2017. Renoprotective chemical constituents from an edible mushroom, Pleurotus cornucopiae in cisplatin-induced nephrotoxicity. Bioorg Chem 71: 67-73. DOI: 10.1016/j.bioorg.2017.01.012.
Liu E, Ji Y, Zhang F, Liu B, Meng X. 2021. Review on Auricularia auricula-judae as a functional food: Growth, chemical composition, and biological activities. Agric Food Chem 69: 1739-1750. DOI: 10.1021/acs.jafc.0c05934.
Lowe H, Toyang N, Steele B, Valentine H, Grant J, Ali A, Ngwa W, Gordon L. 2021. The therapeutic potential of psilocybin. Molecules 26: 2948. DOI: 10.3390/molecules26102948.
Lu J, He R, Sun P, Zhang F, Linhardt RJ, Zhang A. 2020. Molecular mechanisms of bioactive polysaccharides from Ganoderma lucidum (Lingzhi), a review. Int J Biologic Macromol 150: 765-774. DOI: 10.1016/j.ijbiomac.2020.02.035.
McKnight KB, Rohrer JR, Ward KM, McKnight HH. 2021. Peterson Field Guide to Mushrooms of North America. Houghton Mifflin, New York.
Minato KI, Ohara A, Mizuno M. 2017. A proinflammatory effect of the ?-glucan from Pleurotus cornucopiae mushroom on macrophage action. Mediators Inflamm 2017: 8402405. DOI: 10.1155/2017/8402405.
Moreno RB, Ruthes AC, Baggio CH, Vilaplana F, Komura DL, Iacomini M. 2016. Structure and antinociceptive effects of ?-D-glucans from Cookeina tricholoma. Carbohydr Polym 141: 220-228. DOI: 10.1016/j.carbpol.2016.01.001.
Na MW, Lee E, Kang DM, Jeong SY, Ryoo R, Kim CY, Ahn MJ, Kang KB, Kim KH. 2022. Identification of antibacterial sterols from Korean wild mushroom Daedaleopsis confragosa via bioactivity- and LC-MS/MS profile-guided fractionation. Molecules 27: 1865. DOI: 10.3390/molecules27061865
Noverita, Setia TM. 2019. Inventory of macrofungi at peat swamp forest area, Kapuas Hulu, West Kalimantan. J Microb System Biotechnol 1: 11-18. DOI: 10.37604/jmsb.v1i1.17.
Perez M, Soler-Torronteras R, Collado JA, Limones CG, Hellsten R, Johansson M, Sterner O, Bjartell A, Calzado MA, Munoz E. 2014. The fungal metabolite galiellalactone interferes with the nuclear import of NF-?B and inhibits HIV-1 replication. Chem Biol Interact 214: 69-76. DOI: 10.1016/j.cbi.2014.02.012.
Rosemary-Kinge T, Apalah NA, Nji TM, Acha AN, Mih AM. 2017. Species richness and traditional knowledge of macrofungi (Mushrooms) in the Awing forest reserve and communities, Northwest Region, Cameroon. J Mycol 17: 2809239. DOI: 10.1155/2017/2809239.
Shuhada SN, Salim S, Nobilly F, Lechner AM, Azhar B. 2020. Conversion of peat swamp forest to oil palm cultivation reduces the diversity and abundance of macrofungi. Global Ecol Conserv 23: e01122. DOI: 10.1016/j.gecco.2020.e01122.
Shuhada SN, Salim S, Nobilly F, Zubaid A, Azhar B. 2017. Logged peat swamp forest supports greater macrofungal biodiversity than large-scale oil palm plantations and smallholdings. Ecol Evol 7: 7187-7200. DOI: 10.1002/ece3.3273.
Tapwal A, Kumar R, Pandey S. 2013. Diversity and frequency of macrofungi associated with wet ever green tropical forest in Assam, India. Biodiversitas 14: 73-78. DOI: 10.13057/biodiv/d140204.
Valverde ME, Hernandez-Perez T and Paredes-Lopez O. 2015. Edible mushrooms: Improving human health and promoting quality life. Int J Microbiol 2015: 376387. DOI: 10.1155/2015/376387.
Vu V, Muthuramalingam K, Singh V, Hyun C, Kim YM, Unno T, Cho M. 2022. Effects of ?-glucan, probiotics, and synbiotics on obesity-associated colitis and hepatic manifestations in C57BL/6J mice. Eur J Nutr 61: 793-807. DOI: 10.1007/s00394-021-02668-z.
Wang S, Bao L, Zhao F, Wang Q, Li S, Ren J, Li L, Wen H, Guo L, Liu H. 2013. Isolation, identification, and bioactivity of monoterpenoids and sesquiterpenoids from the mycelia of edible mushroom Pleurotus cornucopiae. J Agric Food Chem 61: 5122-5129. DOI: 10.1021/jf401612t.
Yen LTH, Thanh TH, Anh DTH, Linh NM, Nhan VD, Kiet TT. 2022. Antimicrobial and antioxidant activity of the polypore mushroom Lentinus arcularius (Agaricomycetes) isolated in Vietnam. Int J Med Mushrooms 24: 15-23. DOI: 10.1615/IntJMedMushrooms.2022042702.
Yusran Y, Erniwati E, Wahyuni D, Ramadhanil R, Khumaidi A. 2021. Diversity of macro fungus across three altitudinal ranges in Lore Lindu National Park, Central Sulawesi, Indonesia and their utilization by local residents. Biodiversitas 22: 199-210. DOI: 10.13057/biodiv/d220126.
Zhang J, Ma Z, Zheng L, Zhai G, Wang L, Jia M, Jia L. 2014. Purification and antioxidant activities of intracellular zinc polysaccharides from Pleurotus cornucopiae SS-03. Carbohydr Polym 111: 947-954. DOI: 10.1016/j.carbpol.2014.04.074.

Most read articles by the same author(s)