Preparation and characterization of chitosan derived from slipper lobster (Thenus orientalis)

##plugins.themes.bootstrap3.article.main##

RAHMAN KARNILA
BUSTARI HASAN
DIAN IRIANI
HARIFA SYAH PUTRA
MUHAMMAD FAUZI
ZULFARINA

Abstract

Abstract. Karnila R, Hasan B, Iriani D, Putra HS, Fauzi M, Zulfarina. 2024. Preparation and characterization of chitosan derived from slipper lobster (Thenus orientalis). Biodiversitas 25: 4360-4369. Slipper lobster (Thenus orientalis (Lund, 1793)) is a marine fishery commodity that can be utilized its large carapace (proportion >50%) to be converted into chitosan, but ideal, accurate and rapid characterization has not been developed in detecting chitosan and its derivatives as potential raw materials for nutraceuticals. In this study, the proportion and chemical composition of fan shrimp were analyzed, and the carapace of fan shrimp was determined for the degree of deacetylation of chitin and chitosan, then chitosan was evaluated for glycosidic chains using LCMS-MS from ESI sources. The method used was descriptive with 3 repetitions. The results showed that the largest proportion of the fan shrimp body was found in the carapace at 52.98%. The highest mineral content in the carapace is calcium at 752 mg/L and the lowest is phosphorus at 0.36 mg/L and higher than meat. The yield value of chitosan was 31.19% with a deacetylation degree of 80.15%. The glycosidic chain of chitosan has many amine groups from the structure of the compound 2-Amino-2-Deoxy-D-Glucose Chitosamine and 2-(Aminomethyl)-N-(3-isopropyl octahydro [1,2,4] triazolo [4,3-a] pyridine-6-il)-1 piperidinekar kotakamida which have high quality chitosan affinity, but there is a compound 5-Aminomethyl-2,4-Dihydro [1,2,4] Triazol-3-One Hydrochloride and N-[3-Methyl-2-(4-methyl-1-piperazinyl)-butyl] isoleucinamide hydrochloride which tends to be dissociated and cationized by HCl. Overall, these data suggest the glycosidic chain of slipper lobster has potential as a raw material for nutraceuticals and functional food ingredients.

##plugins.themes.bootstrap3.article.details##

References
Abdulsahib HT, Taobi AH, Hashem SS. 2016. A novel coagulant based on chitosan and lignin for the removal of bentonite from raw water. Adv J Sci Res 1 (1): 1-10.
Aboelnaga A, Sahar S, Mohamed H. 2017. A novel chitosan 3-amino-1,2,4-triazole hybrid: Preparation and its effects on cotton fabric properties. J Taibah Univers Sci 11 (5): 768-774. DOI: 10.1016/j.jtusci.2016.08.008.
Aggarwal R, Sumran G. 2020. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 205: 112652. DOI: 10.1016/j.ejmech.2020.112652.
Al Hoqani HA, Al Shaqsi NH, Hossin MA, Al Sibani MA. 2021. Structural characterization of polymeric chitosan and mineral from Omani shrimp shells. Water-Energy Nexus 4: 199-207. DOI: 10.1016/j.wen.2021.11.002.
Al Sagheer FA, Al-Sughayer MA, Muslim S, Elsabee MZ. 2009. Extraction and characterization of chitin and chitosan from marine sources in Arabian Gulf. Carbohydr Polym 77 (2): 410-419. DOI: 10.1016/j.carbpol.2009.01.032.
Alabaraoye E, Achilonu M, Hester R. 2017. Biopolymer (Chitin) from various marine seashell waste: Isolation and characterization. J Polym Environ 26: 2207-2218. DOI: 10.1007/s10924-017-1118-y.
Alisson CL. 2020. Development of LC-MS and Degradation Techniques for the Analysis of Fungal-Derived Chitin. [Dissertation]. Colorado State University, Colorado. [Amerika Serikat]
Aranaz I, Alcántara AR, Civera MC, Arias C, Elorza B, Caballero AH, Acosta N. 2021. Chitosan: An overview of its properties and applications. Polymers (Basel) 13 (19): 3256. DOI: 10.3390/polym13193256.
Arasukumar B, Prabakaran G, Gunalan B, Moovendhan M. 2019. Chemical composition, structural features, surface morphology and bioactivities of chitosan derivatives from lobster (Thenus unimaculatus) shells. Intl J Biol Macromol 135: 1237-1245. DOI: 10.1016/j.ijbiomac.2019.06.033.
Arora K, Kumar P, Bose D, Li X, Kulshrestha S. 2021. Potential applications of algae in biochemical and bioenergy sector. 3 Biotech 11 (6): 296. DOI: 10.1007/s13205-021-02825-5.
Association of Official Analytical Chemists (AOAC). 2007. Official Methods of Analysis of AOAC International. 18th Edition. AOAC International, Gaithersburg.
Azelee NIW, Dahiya D, Ayothiraman S, Noor NM, Rasid ZIA, Ramli ANM, Ravindran B, Iwuchukwu FU, Selvasembian R. 2023. Sustainable valorization approaches on crustacean wastes for the extraction of chitin, bioactive compounds and their applications - A review. Intl J Biol Macromol 253 (Pt 2): 126492. DOI: 10.1016/j.ijbiomac.2023.126492.
BenchChem. 2024. Manufacturer and Supplier of High Quality Specialty Chemicals. Department RnD, US. https://www.benchchem.com
Blasi A, Verardi A, Lopresto CG, Siciliano S, Sangiorgio P. 2023. Lignocellulosic agricultural waste valorization to obtain valuable products: An overview. Recycling 8 (4): 61. DOI: 10.3390/recycling8040061.
Boroumand H, Badie F, Mazaheri S, Seyedi ZS, Nahand JS, Nejati M, Baghi HB, Abbasi-Kolli M, Badehnoosh B, Ghandali M, Hamblin MR, Mirzaei H. 2021. Chitosan-based nanoparticles against viral infections. Front Cell Infect Microbiol 11: 643953. DOI: 10.3389/fcimb.2021.643953.
Cahyono. 2018. Characteristics of chitosan from tiger shrimp shell waste (Panaeus monodon). Jurnal Akuatika Indonesia 3 (2): 96-102. [Indonesian]
Chang JJ, Wang Y, Zhang HZ, Zhou CH, Geng RX, Ji Q. 2011. Recent advances in researches of triazole-based supramolecular chemistry and medicinal drugs. Chem J Chinese Univers 32 (9): 1970-1985. [Chinese]
Dai J, Tian S, Yang X, Liu Z. 2023. Synthesis methods of 1,2,3-/1,2,4-triazoles: A review. Front Chem 10: 891484. DOI: 10.3389/fchem.2022.891484.
Dai P, Li D, Sui J, Kong J, Meng X, Luan S. 2023. Prediction of meat yield in the Pacific whiteleg shrimp Penaeus vannamei. Aquaculture 577: 739914. DOI: 10.1016/j.aquaculture.2023.739914.
Food and Drug Administration (FDA). 2017. Author?ty Ov?r Cosm?t?cs: How Cosm?t?cs Ar? Not FDA- Approv?d, but Ar? FDA-R?gulat?d. US. https://www.fda.com
Ghazali TM, Rahman K, Dewita. 2019. Characteristics and effectiveness of chitosan orininated from the carapace of T. Anomala shrimp as an antibacterial compound. Berkala Perikanan Terubuk 47 (1): 93-101. DOI: 10.31258/terubuk.47.1.93-101.
Ghorbel-Bellaaj O, Hajji S, Younes I, Chaabouni M, Nasri M, Jellouli K. 2013. Optimization of chitin extraction from shrimp waste with Bacillus pumilus A1 using response surface methodology. Intl J Biol Macromol 61: 243-250. DOI: 10.1016/j.ijbiomac.2013.07.001.
Ghorbel-Bellaj O, Noomen H, Kemel J, Islem Y, Hana M, Ridha H, Moncef N. 2011. Shrimp waste fermentation with Pseudomonas aeruginosa A2: Optimization of chitin extraction conditions through Plackett–Burman and response surface methodology approaches. Intl J Biol Macromol 48 (4): 596-602. DOI: 10.1016/j.ijbiomac.2011.01.024.
Gonçalves C, Ferreira N, Lourenço L. 2021. Production of low molecular weight chitosan and Chitooligosaccharides (COS): A review. Polymers (Basel) 13 (15): 2466. DOI: 10.3390/polym13152466.
Gosetti F, Mazzucco E, Gennaro MC, Marengo E. 2013. Ultra high performance liquid chromatography tandem mass spectrometry determination and profiling of prohibited steroids in human biological matrices. A review. J Chromatogr B Analyt Technol Biomed Life Sci 927: 22-36. DOI: 10.1016/j.jchromb.2012.12.003.
Hameed AZ, Raj SA, Kandasamy J, Baghdadi MA, Shahzad MA. 2022. Chitosan: A sustainable material for multifarious applications. Polymers (Basel) 14 (12): 2335. DOI: 10.3390/polym14122335.
Hernández-Gil J, Ferrer S, Ballesteros R, Castiñeiras A. 2013. N-(5-Amino-1H-1,2,4-triazol-3-yl) pyridine-2-carboxamide. Acta Crystallogr Sect E Struct Rep Online 69 (Pt 2): o227-228. DOI: 10.1107/S1600536813000123.
Hisham F, Akmal MM, Ahmad FB, Ahmad K. 2021. Facile extraction of chitin and chitosan from shrimp shell. Mater Today: Proc 42 (5): 2369-2373. DOI: 10.1016/j.matpr.2020.12.329.
Holthuis LB. 1985. A revision of the family Scyllaridae (Crustacea Decapoda Macrura). I. Subfamily Ibacinae. Zoologische Verhandelingen 218: 1-130.
Imam SS, Alshehri S, Ghoneim MM, Zafar A, Alsaidan OA, Alruwaili NK, Gilani SJ, Rizwanullah M. 2021. Recent advancement in chitosan-based nanoparticles for improved oral bioavailability and bioactivity of phytochemicals: Challenges and perspectives. Polymers (Basel) 13 (22): 4036. DOI: 10.3390/polym13224036.
Jiménez-Gómez CP, Cecilia JA. 2020. Chitosan: A natural biopolymer with a wide and varied range of applications. Molecules 25 (17): 3981. DOI: 10.3390/molecules25173981.
Jones CM. 1993. Population structure of Thenus orientalis and T. indicus (Decapoda: Scyllaridae) in northeastern Australia. Mar Ecol Prog Ser 97: 143-155. DOI: 10.3354/meps097143.
Journot CMA, Nicolle L, Lavanchy Y, Gerber-Lemaire S. 2020. Selection of water-soluble chitosan by microwave-assisted degradation and pH-controlled precipitation. Polymers (Basel) 12 (6): 1274. DOI: 10.3390/polym12061274.
Kabli LM, Kagwade PV. 1996. Morphometry and conversion factors in the sand lobster Thenus orientalis (Lund) from Bombay Waters. Indian J Fish 43 (3): 149-254.
Kadak AE, Küçükgülmez A, Çelik M. 2023. Preparation and characterization of crayfish (Astacus leptodactylus) chitosan with different deacetylation degrees. Iran J Biotechnol 21 (2): e3253. DOI: 10.30498/ijb.2023.323958.3253.
Karnila R, Astawan M, Sukarno, Wresdiyati T. 2011. Nutrient content analysis of fresh sand cucumber meat and flour. Berkala Perikanan Terubuk 39 (2): 51-52. [Indonesian]
Karnila R, Dewita E, Yoswatyy D, Putri T, Yunus A. 2023. Antioxidant activity on protein hydrolysate peptide of mudskipper fish (Periophthalmodon schlosseri) using alcalase enzyme. Food Sci Technol 43: e122222. DOI: 10.5327/fst.122222.
Karnila R, Loekman S, Humairah S. 2021. The use of different deacetylation temperature toward quality of chitosan mud crab shell (Scylla serrata). IOP Conf Ser: Earth Environ Sci 934: 012092. DOI: 10.1088/1755-1315/934/1/012092.
Kilbile JT, Tamboli Y, Gadekar SS, Islam I, Supuran CT, Sapkal SB. 2023. An insight into the biological activity and structure-based drug design attributes of sulfonylpiperazine derivatives. J Mol Struct 1278: 134971. DOI: 10.1016/j.molstruc.2023.134971.
Kizhakudan JK. 2014. Reproductive biology of the female shovel-nosed lobster Thenus unimaculatus (Burton and Davie, 2007) from north-west coast of India. Indian J Mar Sci 43 (6): 927-935.
Kozma M, Acharya B, Bissessur R. 2022. Chitin, chitosan, and nanochitin: Extraction, synthesis, and applications. Polymers (Basel) 14 (19): 3989. DOI: 10.3390/polym14193989.
Kraisangsri J, Nalinanon S, Riebroy S, Yarnpakdee S, Ganesan P. 2018. Physicochemical characteristics of glucosamine from blue swimming crab (Portunus pelagicus) shell prepared by acid hydrolysis. Walailak J Sci Tech 15 (12): 869-877. DOI: 10.48048/wjst.2018.3666.
Kumar S, Khokra SL, Yadav A. 2021. Triazole analogues as potential pharmacological agents: A brief review. Futur J Pharm Sci 7: 106. DOI: 10.1186/s43094-021-00241-3.
Kumirska J, Czerwicka M, Kaczy?ski Z, Bychowska A, Brzozowski K, Thöming J, Stepnowski P. 2010. Application of spectroscopic methods for structural analysis of chitin and chitosan. Mar Drugs 8 (5): 1567-1636. DOI: 10.3390/md8051567.
Lavalli K, Spanier E, Goldstein J. 2019. Scyllarid Lobster Biology and Ecology. IntechOpen. DOI: 10.5772/intechopen.88218.
Li FX, Zhao HY, Lin TF, Jiang YW, Liu D, Wei C, Zhao ZY, Yang ZY, Sha F, Yang ZR, Tang JL. 2023. Regular glucosamine use may have different roles in the risk of site-specific cancers: Findings from a large prospective cohort. Cancer Epidemiol Biomarkers Prev 32 (4): 531-541. DOI: 10.1158/1055-9965.EPI-22-1134.
Li J, Chen L, Meng Z, Dou G. 2019. Development of a mass spectrometry method for the characterization of a series of chitosan. Intl J Biol Macromol 121: 89-96. DOI: 10.1016/j.ijbiomac.2018.09.194.
Lin HH, Zheng XL, Cao SL. 2012. 5-Methyl-3,3-bis-(4-methyl-piperazin-1-yl)-1-[2-(4-methyl-piperazin-1-yl)eth-yl]indolin-2-one. Acta Crystallogr Sect E Struct Rep Online 68 (Pt 6): o1855. DOI: 10.1107/S1600536812022416.
Manimohan M, Rahaman M, Pandiaraj S, Thiruvengadam M, Pugalmani S. 2024. Exploring biological activity and in-vitro anticancer effects of a new biomaterial derived from Schiff base isolated from Homarus americanus (Lobster) shell waste. Sustain Chem Pharm 37: 101363. DOI: 10.1016/j.scp.2023.101363.
Mathaba M, Daramola MO. 2020. Effect of chitosan's degree of deacetylation on the performance of PES membrane infused with chitosan during AMD treatment. Membranes (Basel) 10 (3): 52. DOI: 10.3390/membranes10030052.
Matin MM, Matin P, Rahman MR, Ben Hadda T, Almalki FA, Mahmud S, Ghoneim MM, Alruwaily M, Alshehri S. 2022. Triazoles and their derivatives: Chemistry, synthesis, and therapeutic applications. Front Mol Biosci 9: 864286. DOI: 10.3389/fmolb.2022.864286.
Mauri MC, Paletta S, Maffini M, Colasanti A, Dragogna F, Di Pace C, Altamura AC. 2014. Clinical pharmacology of atypical antipsychotics: An update. EXCLI J 13: 1163-1191. DOI: 10.17877/DE290R-7037.
Mawazi SM, Kumar M, Ahmad N, Ge Y, Mahmood S. 2024. Recent applications of chitosan and its derivatives in antibacterial, anticancer, wound healing, and tissue engineering fields. Polymers (Basel) 16 (10): 1351. DOI: 10.3390/polym16101351.
Mergelsberg ST, Ulrich RN, Xiao S, Dove PM. 2019. Composition systematics in the exoskeleton of the American Lobster, Homarus americanus and implications for Malacostraca. Front Earth Sci 7: 69. DOI: 10.3389/feart.2019.00069.
Modayil MJ, Sathiadhas R, Gopakumar G. 2008. India. In: Lovatelli A, Phillips MJ, Arthur JR, Yamamoto K (eds). FAO/NACA Regional Workshop on the Future of Mariculture: A Regional Approach for Responsible Development in the Asia-Pacific Region. Guangzhou, China, 7–11 March 2006. FAO Fisheries Proceedings. No. 11. FAO, Rome.
Mohan K, Muralisankar T, Jayakumar R, Rajeevgandhi C. 2021. A study on structural comparisons of a-chitin extracted from marine crustacean shell waste. Carbohydr Polym Technol Appl 2: 100037. DOI: 10.1016/j.carpta.2021.100037.
Mura P, Maestrelli F, Cirri M, Mennini N. 2022. Multiple roles of chitosan in mucosal drug delivery: An updated review. Mar Drugs 20 (5): 335. DOI: 10.3390/md20050335.
Nguyen TT, Luo X, Su P, Balakrishnan B, Zhang W. 2020. Highly efficient recovery of nutritional proteins from Australian Rock lobster heads (Jasus edwardsii) by integrating ultrasonic extraction and chitosan co-precipitation. Innov Food Sci Emerg Technol 60: 102308. DOI: 10.1016/j.ifset.2020.102308.
Pakizeh M, Moradi A, Ghassemi T. 2021. Chemical extraction and modification of chitin and chitosan from shrimp shells. European Polymer Journal 159: 110709. DOI: 10.1016/j.eurpolymj.2021.110709.
Picos-Corrales LA, Morales-Burgos AM, Ruelas-Leyva JP, Crini G, García-Armenta E, Jimenez-Lam SA, Ayón-Reyna LE, Rocha-Alonzo F, Calderón-Zamora L, Osuna-Martínez U, Calderón-Castro A, De-Paz-Arroyo G, Inzunza-Camacho LN. 2023. Chitosan as an outstanding polysaccharide improving health-commodities of humans and environmental protection. Polymers (Basel) 15 (3): 526. DOI: 10.3390/polym15030526.
Piekarska K, Sikora M, Owczarek M, Jó?wik-Pruska J, Wi?niewska-Wrona M. 2023. Chitin and chitosan as polymers of the future-obtaining, modification, life cycle assessment and main directions of application. Polymers (Basel) 15 (4): 793. DOI: 10.3390/polym15040793.
Pratiwi R. 2011. Sand shrimp (Thenus spp.) which is not widely known. Oseanografi-LIPI XXXVI (2): 41-48. [Indonesian]
Priyanka DN, Prashanth KH, Tharanathan RN. 2022. A review on potential anti-diabetic mechanisms of chitosan and its derivatives. Carbohydr Polym Technol Appl 3: 100188. DOI: 10.1016/j.carpta.2022.100188.
Putra HS, Hasan B, Karnila R, Ghazali TM. 2024. Mineral content profile of carapace flour, chitin, and chitosan slipper lobster (Thenus orientalis). Asian J Aquat Sci 7 (2): 192-199. DOI: 10.31258/ajoas.7.2.192-199.
Putra MR, Karnila R, Hasan B. 2023. Potential chitosan of waste shell mantis shrimp (Harpiosquilla raphidea) as antibacterial. Asian J Aquat Sci 6 (1): 129-135. DOI: 10.31258/ajoas.6.1.129-135.
Rasti H, Parivar K, Baharara J, Iranshahi M, Namvar F. 2017. Chitin from the mollusc chiton: Extraction, characterization and chitosan preparation. Iran J Pharm Res 16 (1): 366-379.
Rasweefali MK, Sabu S, Azad KM, Rahman MR, Sunooj KV, Sasidharan A, Anoop KK. 2022. Influence of deproteinization and demineralization process sequences on the physicochemical and structural characteristics of chitin isolated from Deep-sea mud shrimp (Solenocera hextii). Adv Biomarker Sci Technol 4: 12-27. DOI: 10.1016/j.abst.2022.03.001.
Sánchez-Machado DI, López-Cervantes J, Escárcega-Galaz AA, Campas-Baypoli ON, Martínez-Ibarra DM, Rascón-León S. 2024. Measurement of the degree of deacetylation in chitosan films by FTIR, 1H NMR and UV spectrophotometry. MethodsX 12: 102583. DOI: 10.1016/j.mex.2024.102583.
Sivashankari PR, Prabaharan M. 2017. Deacetylation modification techniques of chitin and chitosan. In: Jennings JA, Bumgardner JD, (eds). Chitosan Based Biomaterials 1. Woodhead Publishing, Cambridge UK. DOI: 10.1016/B978-0-08-100230-8.00005-4.
SNI 7949:2013. Kitosan - Syarat mutu dan pengolahan 298/KEP/BSN/12/2013. [Indonesian]
Srinivasan H, Kanayairam V, Ramanibai R. 2018. Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Intl J Biol Macromol 107: 662-667. DOI: 10.1016/j.ijbiomac.2017.09.035.
Statistical Package for the Social Sciences (SPSS). 2022. IBM SPSS software. US. https://www.ibm.com/id-id/spss
Stefaniak J, Nowak MG, Wojciechowski M, Milewski S, Skwarecki AS. 2022. Inhibitors of glucosamine-6-phosphate synthase as potential antimicrobials or antidiabetics-synthesis and properties. J Enzyme Inhib Med Chem 37 (1): 1928-1956. DOI: 10.1080/14756366.2022.2096018.
Strzelecka M, ?wi?tek P. 2021. 1,2,4-Triazoles as important antibacterial agents. Pharmaceuticals (Basel) 14 (3): 224. DOI: 10.3390/ph14030224.
Sumarto. 2020. Characteristics of Sand Sea Cucumber (Holhuria scabra J.) and Potential of Glucosamine Extract for Synovial Fluid Production in Osteoarthritis Patients. [Thesis]. Universitas Riau, Pekanbaru. Pekanbaru. [Indonesian]
Suptijah P, Jacoeb AM, Rachmania D. 2011. Characterization Chitosan Nano from White Shrimp Shells (Litopenaeus vannamei) with Ionic Gelation Methods. Indones J Fisher Prod Processing 17 (2): 78-84. DOI: 10.17844/jphpi.v14i2.5315.
Suzuki N. 2021. Tissue N-Glycan analysis using LC-MS, MS/MS, and MS(n). current. Protocols e200: 1-48. DOI: 10.1002/cpz1.200.
Syukron F, Karnila R, Hasan B. 2016. Characteristics of Glucosamine Hydrochloride (HCl GlcN) from chitin and blue pond chitosan crab (Portunus pelagicus). Berkala Perikanan Terubuk 44 (2): 22-35. [Indonesian]
Tavares JO, Cotas J, Valado A, Pereira L. 2023. Algae food products as a healthcare solution. Mar Drugs 21 (11): 578. DOI: 10.3390/md21110578.
Taylor CJ, Pomberger A, Felton KC, Grainger R, Barecka M, Chamberlain TW, Bourne RA, Johnson CN, Lapkin AA. 2023. A brief introduction to chemical reaction optimization. Chem Rev 123 (6): 3089-3126. DOI: 10.1021/acs.chemrev.2c00798.
Teoh CF, Tuzan AD, Yong AS, Liew KS, Lim LS, Liew HJ. 2023. Evaluation of crystalline amino acid as potent stimulatory chemoattractants for the slipper lobster (Thenus orientalis). PeerJ 11: e15607. DOI: 10.7717/peerj.15607.
Thebiotek. 2024. Manufacturer and Supplier of High Quality Specialty Chemicals. Department RnD, California. https://www.thebiotek.com
Triunfo M, Tafi E, Guarnieri A, Salvia R, Scieuzo C, Hahn T, Zibek S, Gagliardini A, Panariello L, Coltelli MB, De Bonis A, Falabella P. 2022. Characterization of chitin and chitosan derived from Hermetia illucens, a further step in a circular economy process. Sci Rep 12: 6613. DOI: 10.1038/s41598-022-10423-5.
Vårum KM, Anthonsen MW, Grasdalen H, Smidsrød O. 1991. Determination of the degree of N-acetylation and the distribution of N-acetyl groups in partially N-deacetylated chitins (chitosans) by high-field n.m.r. spectroscopy. Carbohydr Res 211 (1): 17-23. DOI: 10.1016/0008-6215(91)84142-2.
Verardi A, Sangiorgio P, Lopresto CG, Casella P, Errico S. 2023. Enhancing carotenoids’ efficacy by using chitosan-based delivery systems. Nutraceuticals 3 (3): 451-480. DOI: 10.3390/nutraceuticals3030033.
William W, Wid N. 2019. Comparison of extraction sequence on yield and physico-chemical characteristic of chitosan from shrimp shell waste. J Phys Conf Ser 1358: 012002. DOI: 10.1088/1742-6596/1358/1/012002.
Xu W, Kangxing Lv, Mu W, Zhou S, Yang Y. 2021a. Encapsulation of ?-tocopherol in whey protein isolate/chitosan particles using oil-in-water emulsion with optimal stability and bioaccessibility. LWT 148: 111724. DOI: 10.1016/j.lwt.2021.111724.
Xu, Wang Y, Liu X, Zhang L, Jiang Q. 2021b. Chitosan from crab shell waste: A review on its preparation, characterization, and applications. Biol Macromol 166: 195-209.
Xue T, Wang W, Yang Z, Wang F, Yang L, Li J, Gan H, Gu R, Wu Z, Dou G, Meng Z. 2022. Accurate determination of the degree of deacetylation of chitosan using UPLC–MS/MS. Intl J Mol Sci 23 (15): 8810. DOI: 10.3390/ijms23158810.
Yuliasara F, Sari MN, Choriah MN, Mahmiah. 2019. Preparation of chitin and chitosan from vanname shrimp skin. National Marine Seminar 17 102-108. [Indonesian]
Zhang D, Bland JM, Xu D, Chung S. 2015. Degradation of chitin and chitosan by a recombinant chitinase derived from a virulent Aeromonas hydrophila isolated from diseased channel catfish. Adv Microbiol 5 (9): 611-619. DOI: 10.4236/aim.2015.59064.
Zhang J, Cheng X, Chang L, Zhang L, Zhang S. 2021. Combined treatments of chitosan and sodium silicate to inhibit Alternaria alternata pathogens of postharvest winter jujube. Food Sci Biotechnol 30 (4): 589-597. DOI: 10.1007/s10068-021-00890-3.
Zhang Y, Xue C, Xue Y, Gao R, Zhang X. 2005. Determination of the degree of deacetylation of chitin and chitosan by X-ray powder diffraction. Carbohydr Res 340 (11): 1914-1917. DOI: 10.1016/j.carres.2005.05.005.
Zhang Z, Ma Z, Song L, Farag MA. 2024. Maximizing crustaceans (shrimp, crab, and lobster) by-products value for optimum valorization practices: A comparative review of their active ingredients, extraction, bioprocesses and applications. J Adv Res 57: 59-76. DOI: 10.1016/j.jare.2023.11.002.
Zhi-Hou L, Xiang G, Vincent CHC, Wen-Fang Z, Qi F, Yuebin L, Wang, Dong S, Xi-Ru Z, Peidong Z, Fu-Rong L, Qing-Mei H, Qing C, Wei-Qi S, Xian-Bo W, Xiaoming S, Virginia BK, Xingfen Y, Chen M. 2020. Associations of regular glucosamine use with all-cause and cause-specific mortality: A large prospective cohort study. Ann Rheum Dis 79 (6): 1-8. DOI: 10.1136/annrheumdis-2020-217176.
Zhou J, Wu Z, Lin Z, Wang W, Wan R, Liu T. 2022. Association between glucosamine use and cancer mortality: A large prospective cohort study. Front Nutr 9: 947818. DOI: 10.3389/fnut.2022.947818.