Diversity and similarity of melon (Cucumis melo L.) groups and determination of distinguishing morphological characters




Abstract. Saputra HE, Syukur M, Suwarno WB, Sobir. 2022. Diversity and similarity of melon (Cucumis melo L.) groups and determination of distinguishing morphological characters. Biodiversitas 23: 6254-6261. Characterization is an important activity for the study of genotype diversity and similarity. The study was aiming at obtaining information about the diversity and similarity of melon groups and to determine morphological characters as differentiators between melon groups. The genotypes tested were IPB240, IPB283, IPBM21, IPBM23, IPBME5, IPBMETA9, UME20, UME38, UME39, UME90, UME91, UME98, UME99, UME100, UME101. Characterization was based on UPOV and IPGRI guidelines for qualitative and quantitative characters. Two qualitative characters showed no variation in all tested genotypes, namely sex expression (EK) and secondary skin color outside the groove (WKSDA). Qualitative characters that have high diversity were groove color (WA), maximum width between grooves (LMAA), groove color intensity (IWA), and flower stalk thickness (KTBN). The UME98 genotype had the most different color appearance from the other genotypes on the heatmap. The color and depth of fruit grooves are distinguishing characteristics of all genotypes. There were genotype differences in the inodorus and reticulatus types. Unlike the IPBMETA9 genotype, UME100, UME101, and UME38 formed the same clusters with the characteristics of the makuwa group. Melon group makuwa had different characteristics with the inodorus and reticulatus groups. The distinguishing characters for the makuwa type were groove depth, ratio length to diameter, the diameter of hermaphrodite flower stalks, fruit diameter, and fruit skin thickness. Melon groups in the inodorus and reticulatus groups had high similarities, making it difficult to find specific characters in all melon genotypes observed.


Boitshepo P, Martin M, Puffy S. Stephen O.A. 2020. Development, yield and quality of cantaloupe and honeydew melon in soilless culture in a nontemperature controlled high tunnel. International Journal of Vegetable Science 26, 292–301. DOI: 10.1080/19315260.2020.1727075
Chikh-Rouhou H, Mezghani N, Mnasri S, Mezghani N, Garcés-Claver A. 2021. Assessing the Genetic Diversity and Population Structure of a Tunisian Melon (Cucumis melo L.) Collection Using Phenotypic Traits and SSR Molecular Markers. Agronomy 11(6):1121. DOI:10.3390/agronomy11061121.
Choi JY, Shin JS, Chung YS, Hyung NI. 2012. An efficient selection and regeneration protocol for Agrobacterium mediated transformation of oriental melon (Cucumis melo L. var. makuwa). Plant Cell Tiss Org. 110:133-140. DOI: 10.1007/s11240-012-0137-6.
Endl J., Achigan-Dako E. G., Pandey A. K., Monforte A. J., Pico B., & Schaefer H. (2018). Repeated domestication of melon (Cucumis melo) in Africa and Asia and a new close relative from India. American Journal of Botany.105 (10): 1-10. DOI: 10.1002/ajb2.1172
Esteras C, Rambla JL, Sánchez G, Granell A, Picó MB. Melon Genetic Resources Characterization for Rind Volatile Profile. Agronomy. 2020; 10(10):1512. DOI:10.3390/agronomy10101512.
Ewing PM, Runck BC, Kono TYJ, Kantar. 2019. The home field advantage of modern plant breeding. PLoS ONE 14 (12): e0227079. DOI: 10.1371/journal.pone.0227079.
Galpaz N, Gonda I, Shem-Tov D, Barad O, Tzuri G, Lev S, Fei ZJ, Xu YM, Mao LY, Jiao C. 2018. Deciphering genetic factors that determine melon fruit-quality traits using RNA-Seq-based high-resolution QTL and eQTL mapping. Plant J 94(1):169–191. DOI: 10.1111/tpj.13838
Guliyev N, Sharifova S, Ojaghi J, Abbasov M, Akparov Z. 2018. Genetic diversity among melon (Cucumis melo L.) accessionsrevealed by morphological traits and ISSR markers," Turkish Journal of Agriculture and Forestry: Vol. 42: No. 6, Article 2. DOI:10.3906/ tar-1707-18.
Liu L, Sun T, Liu X, Guo Y, Huang X, Gao P, Wang X. 2019. Genetic analysis and mapping of a striped rind gene (st3) in melon (Cucumis melo L.). Euphytica 215:20. DOI: 10.1007/s10681-019-2353-1.
Maleki M, Shojaeiyan A, Rashidi MS. 2018. Population structure, morphological and genetic diversity within and among melon (Cucumis melo L.) landraces in Iran. Journal of Genetic Engineering and Biotechnology. DOI: 10.1016/j.jgeb.2018.08.002.
Merheb J, Pawe?kowicz M, Branca F, Bolibok-Br?goszewska H, Skarzy?ska A, Pl?der W, Chalak L. 2020. Characterization of Lebanese germplasm of snake melon (Cucumis melo subsp. melo var. flexuosus) using morphological traits and SSR Markers. Agronomy 10(9):1293. DOI:10.3390/agronomy10091293.
Monforte A J. 2017. The genetic control of fruit morphology in Cucumis melo L. Acta Hortic. 1151, 1–3. DOI: 10.17660/ActaHortic.2017.1151.1
Nunez-Palenius HG, Gomez-Lim M, Ochoa-Alejo N, Grumet R, Lester G, Cantliffe GJ. 2008. Melon fruits: genetic diversity, physiology, and biotechnology features. Critical Reviews in Biotechnology, 28:13–55. DOI: 10.1080/07388550801891111.
Pandey A, Ranjan P, Ahlawat S P, Bhardwaj R, Dhariwal O P, Singh P K, et al. 2021. Studies on fruit morphology, nutritional and floral diversity in less-known melons (Cucumis melo L.) of India. Genet Resour Crop Evol 68 :1453–1470. DOI:10.1007/s10722-020-01075-3.
Pourranjbari Saghaiesh S, Souri M.K, Moghaddam M. 2018. Effects of different magnesium levels on some morphophysiological characteristics and nutrient elements uptake in Khatouni melons (Cucumis melo var. inodorus). Plant Nutrition 42, 27- 39. DOI: 10.1080/01904167.2018.1544256
Reddy B.P.K, Begum H, Sunil N, Reddy M.T. 2017. Correlation and path coefficient analysis in muskmelon (Cucumis melo L.). International Journal of Current Microbiology and Applied Sciences 6, 2261–2276. DOI: 10.20546/ijcmas.2017.606.268
Revanasidda, and Belavadi V V. 2019. Floral biology and pollination in Cucumis melo L., a tropical andromonoecious cucurbit. J. Asia Pac. Entomol. 22: 215–225. DOI: 10.1016/j.aspen.2019.01.001
Salamah U, Saputra H E dan Herman W. 2021. Karakterisasi Buah Dua Puluh Enam Genotipe Melon pada Media Pasir Sistem Hidroponik. PENDIPA Journal of Science Education: 5(2), 195-203 (Indonesia). DOI: 10.33369/pendipa.5.2.195-203
Saputro NW, Hidayat T, Bayfurqon FM, Khamid MBR. 2020. Evaluation of morpho-agronomic characterization Apple cucumber: a new variety of melon from Indonesia. IOP Conf. Series: Earth and Environmental Science 457: 012061. DOI: 10.1088/1755-1315/457/1/012061.
Vella FM, Cautela D, Laratta B. 2019. Characterization of polyphenolic compounds in cantaloupe melon by-products. Foods 8(6): 1-10. DOI:10.3390/foods8060196.
Wang X, Ando K, Wu, S, Reddy UK, Tamang P, Bao K, Hammar SA, Grumet R, McCreight JD and Fei Z. 2021. Genetic characterization of melon accessions in the U.S. National Plant Germplasm System and construction of a melon core collection. Molecular Horticulture :1-11. DOI: 10.1186/s43897-021-00014-9.
Wang K, He L, Yan H, Wei X. 2015. Induction of tetraploidity with antimicrotubule agents in oriental melon (Cucumis melo var. Makuwa). Israel Journal of Plant Sciences. DOI: 10.1080/07929978.2015.1067411.
Yusuf AF, Wibowo WA, Daryono BS. 2022. Genetic stability of melon (Cucumis melo L. cv. Meloni) based on inter-simple sequence repeat and phenotypic characteristics. Biodiversitas 23(6) : 3042-3049. DOI: 10.13057/biodiv/d230631.
Zaidi SSA, Vanderschuren H, Qaim M, Mahfouz, MM, Kohli A, Mansoor S, Tester M. 2019. New plant breeding technologiesforfood security. Sci 363: 6434. DOI: 10.1126/science.aav6316.
Zhao G, Lian Q, Zhang Z, Fu Q, He Y, Ma S, et al. 2019. A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits. Nat Genet. 51(11):1607 –1615. DOI: 10.1038/s41588-019-0522-8.

Most read articles by the same author(s)

1 2 3 4 5 6 > >>