Predicting suitable areas for Baccaurea angulata in Kalimantan, Indonesia using Maxent modelling

##plugins.themes.bootstrap3.article.main##

Gunawan Gunawan
Sulistijorini Sulistijorini
Tatik Chikmawati
Sobir Sobir

Abstract

Abstract. Gunawan, Sulistijorini, Chikmawati T, Sobir. 2021. Predicting suitable areas for Baccaurea angulata in Kalimantan, Indonesia Using MaxEnt Modelling. Biodiversitas 22: 2646-2653. Baccaurea angulata Merr. or ‘Belimbing Dayak’ is an underutilized fruit indigenous in Kalimantan. This species potentially used as edible fruit and medicinal plant. Unfortunately,  the forest conversion to oil palm and rubber plantations causes decreasing the habitat of B. angulata.  However, little is known about the occurrences and suitable habitat of B. angulata in Kalimantan. This investigation is might be the first study report on predicting the distribution of B. angulata in Kalimantan using MaxEnt (Maximum Entropy). The results show that four variables namely solar radiation in October, altitude,  precipitation of warmest quarter, and gloslope are significant factors determining B.angulata’s suitable habitat. The location of suitable habitat for  B. angulata is accordant with the real present distribution. The extent of potentially suitable area was significantly larger than the present occurrence of B. angulata in Kalimantan. The highest suitable areas identified in this study covered West Kalimantan and South Kalimantan. They included parts of SB (Sambas), LD (Landak), SG (Sanggau), SK (Sekadau) and BK (Bengkayang) of West Kalimantan Provinces, and TL (Tanah Laut), BN (Banjar) of South Kalimantan Provinces. The MaxEnt model performed better than random method with an Area Under Curve (AUC) value of 0.937 and it was statistically significant. It indicated that MaxEnt model was highly accurate and informative for habitat suitability of B. angulata. The predicted model of suitable areas can be used for management, monitoring, cultivation and future conservation of B. angulata.

##plugins.themes.bootstrap3.article.details##

References
Adam M, Rasad MSBBA. 2015. Expression of matrix metalloproteinase-13 in human skin melanoma cancer treated by Baccaurea angulata in vitro. J Basic Appl Res 1(1): 21-28.
Adhikari P, Shin MS, Jeon JY, Kim HW, Hong S, Seo C. 2018. Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea. j ecology environ 42 (36). Doi: 10.1186/s41610-018-0095-y
Ahmed IA, Mikail MA, Ibrahim M, Hazali N, Rasad MSBA, Gani RA, Wahab RA, Arief SJ, Yahya MNA. 2014. Antioxidant actovity and phenolic profile of various morphological parts of underutilized Baccaurea angulata fruit. Food Chem 172:778–787.
Asanok L, Kamyo T, Marod D. 2020. Maximum entropy modeling for the conservation of Hopea odorata in riparian forest, central Thailand. Biodiversitas 12 (10): 4663-4670.
Berli FJ. Alonso R. Bressan-Smith R. Bottini R. 2013. UV-B impairs growth and gas exchange in grapevines grown in high altitude. Physiologia Plantarum 149 (1): 127–140.
Busby JR. 1991. BIOCLIM: a bioclimate analysis and prediction system. Plant Prot Q 6: 8-9.
Cai ZQ, Jiao DY, Tang SX, Dao XS, Lei YB, Cai CT. 2012. Leaf photosynthesis, growth, and seed chemicals of Sacha Inchi plants cultivated along an altitude gradient. Crop Science 52(4): 1859–1867.
Carpenter G, Gillison AN, Winter J. 1993. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv 2: 667-80.
Cavanaugh KC, Kellner JR, Forde AJ, Gruner DS, Parker JD. 2014. Poleward expansion of mangroves is a threshold response to decreased frequency of extreme cold events. Proceedings National Academy Sci 111(2): 723-727. Doi: 10.1073/pnas.1315800111.
Dogra V, Ahuja PS, Sreenivasulu Y. 2013. Change in protein content during seed germination of a high altitude plant Podophyllum hexandrum Royle. Journal of Proteomics 78(78): 26–38.
Esfanjani J, Ghorbani A, Chahouki MAZ. 2018. Maxent modeling for predicting impacts of environmental factors on the potential distribution of Artemisia aucheri and Bromus tomentellus, Festuca ovina in Iran. Pol J Environ Stud 27(3):1041–1047.
Fick SE, Hijmans RJ. 2017. Worldclim 2: New 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37(12): 4302-4315.
Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G. 2018. Using species distribution models at local scale to guide the search of poorly known species, review: methodological issues and future directions. Ecol Model 385: 124-132.
Grytnes JA, Vetaas OR. 2002. Species richness and altitude: a comparison between null models and interpolated plant species richness along the Himalayan altitudinal gradient, Nepal. The American Naturalist 159(3): 294–304.
Haegens R. 2000. Taxonomy, phylogeny, and biogeography of Baccaurea, Distichirhops, and Nothobaccaurea (Euphorbiaceae). Blumea. Supplement 12.
Hijmans RJ, Guarino L, Mathur P. 2012. DIVA-GIS version 7.5 Manual. https://www.diva-gis.org/
Hirzel A, Guisan A. 2002. Which is the optimal sampling strategy for habitat suitability modelling. Ecol Model 157: 331-41.
Ibrahim D, Hazali N, Jauhari N, Omar MN, Yahya MNA, Ahmed IA, Mikail M A, Ibrahim M. 2013. Physicochemical and antioxidant characteristics of Baccaurea angulata fruit juice extract. Afr J Biotech 12(34): 5333-5338.
Khanum R, Mumtaz AS, Kumar S. 2013. Predicting impacts of climate change on medicinal Asclepiads of Pakistan using Maxent modeling. Acta Oecol 49:23–31.
Lehmann A, Overton JM, Leathwick JR. 2002. Erratum to GRASP: generalized regression analysis and spatial prediction. Ecol Model 157:189-207.
Lim TK. 2012. Edible Medicine and Non-Medicine Plants: Volume 4. London (GB): Springer.
Marcer A, Sáe L, Molowny-Horas R, Pons X, Pino J. 2013. Using species distribution modelling to disentangle realised versus potential distributions for rare species conservation. Biol Cons 166: 221-230.
Mikail MA, Ahmed IA, Ibrahim M, Hazali N, Rasad MSBA, Ghani RA, Wahab RA, Arief SJ, Isa MLM, Draman S, Ishola AA, Yahya MNA. 2014. Changes in the markers of atherosclerosis following administration of belimbing dayak (Baccaurea angulata) fruit juice in experimental rabbits fed with cholesterol diet. Int J Adv Agric Environ Eng 1(1): 151-154.
Mikail MA, Ahmed IA, Ibrahim M, Hazali N, Rasad MSBA, Ghani RA, Hashim R, Wahab RA, Arief SJ, Isa MLM, Draman S, Yahya MNA. 2015. Baccaurea angulata fruit inhibits lipid peroxidation and induces the increase in antioxidant enzyme activities. Eur J Nutr. 55(4):1435–1444.
Momand L, Zakaria R, Mikail M, Jalal T, Ibrahim M, Wahab RA. 2014. Antimicrobial effect of Baccaurea angulata fruit extracts against human pathogenic microorganisms. Merit Res J Med Med Sci 2(10): 229-237.
Norazlanshah, Afiq M, Muhammad, Masri M. 2015. Determination of phytochemicals and vitamin content of underutilized Baccaurea angulata fruit. J Pharm Phytochem 4(4): 192-196.
Nurtjahjaningsih, Sulistyawati ILG, Rimbawanto WA. 2012. Karakteristik pembungaan dan sistem perkawinan Nyamplung (Calophyllum inophyllum) pada hutan tanaman di Watusipat, Gunung Kidul. Jurnal Pemuliaan Tanaman Hutan 6(2): 65–80.
Phillips SJ, Dud´k M, Schapire RE. 2004. A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning 83: 655–662.
Philips SJ, Anderson RP, Schapire RE. 2006. Maximum entropy modeling of species geographic distributions. Ecol Model 190: 231-259.
Phillips SJ, Robert PA, Dudik M, Schapire RE, Blair M. 2017. Opening the black box: an open-source release of Maxent. Ecography 887-893.
Promnikorn K, Jutamanee K, Kraichak E. 2019. MaxEnt model for predicting potential distribution of Vitex glabrata R.Br. in Thailand. Agr. Nat. Resour 53: 44–48.
Rana SK, Rana HK, Ghimire SK, Shrestha KK, Ranjitkar S. 2017. Predicting the impact of climate change on the distribution of two threatened Himalayan medicinal plants of Liliaceae in Nepal J Mt Sci 14(3): 558-570.
Rezazadeh A, Harkess RL, Telmadarrehei T. 2018. The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulture 4(36): 1–7.
Sun J, Cheng GW, Li WP, Sha YK, Yang YC. 2013. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens 5(4):1894–911.
Sweats JA. 1988. Measuring the Accuracy of diagnostic systems. Science 240: 1285-1293.
Thery M. 2001. Forest light and its influence on habitat selection. Plant Ecol 153(1-2): 251-261.
Voon BH & Kueh HS. 1999. The nutritional value of indigenous fruits and vegetables in Sarawak. Asia Pac. J. Clin. Nutr 8: 24-31.
Wang J, Wang Z, Zhang X, Zhang Y, Ran C, Zhang J, Chen B, Zhang B. 2015. Response of Kobresia pygmaea and Stipa purpurea Grassland communities in Northern Tibet to nitrogen and phosphate addition. Mt Res Dev 35:78–86.
Wei B, Wang R, Hou K, Wang X, Wu W. 2018. Predicting the current and future cultivation regions of Carthamus tinctorius L. using Maxent model under climate change in China. Global Ecology and Conservation 16: e00477. DOI: 10.1016/j.gecco.2018.e00477.
Worthington TA, Zhang T, Logue DR, Mittelstet AR, Brewer SK. 2016. Landscape and flow metrics affecting the distribution of a federally-threatened fish: improving management, model fit, and model transferability. Ecol Model 342: 1-18.
Xu X, Zhang H, Yue J, Xie T, Xu Y, Tian Y. 2018. Predicting shifts in the suiteble climatic distribution of walnut (Juglans regia L.) in China: maximum entropy model paves the way to forest management. Forest 9(103): 1–15.
Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS. 2013. Maxent modeling for predicting the potential distribution of medicinal plant Justicia adhatoda L: in Lesser Himalayan foothills. Ecol Eng 51:83–87.
Yee TW, Mitchell ND.2002. Generalized additive models in plant ecology. J Veg Sci 157:141–56.
Yi YJ, Cheng X, Yang ZF, Zhang SH. 2016. Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan. China Ecol Eng 92:260–269.
Zhang X, Li G, Du S. 2018. Simulating the potential distribution of Elaeagnus angustifolia L based on climatic constraints in China. Ecol Eng 113: 27-34.
Zhu G P, Gariepy T D, Haye T, Bu W J. 2017. Patterns of niche filling and expansion across the invaded ranges of Halyomorpha halys in North America and Europe. J Pest Sci 90: 1-13.

Most read articles by the same author(s)

1 2 3 4 5 > >>