Waterlogging and salinity stress affecting growth and morphological character changes of Limnocharis flava

##plugins.themes.bootstrap3.article.main##

SIDIQ PERMANA PUTRA
SANTOSA
YUSTINA CAROLINA FEBRIANTI SALSINHA

Abstract

Abstract. Putra SP, Santosa, Salsinha YCF. 2023. Waterlogging and salinity stress affecting growth and morphological character changes of Limnocharis flava. Biodiversitas 24: 333-340. Salinity stress and waterlogging affect plant growth response. This study aims to determine the effect of variations in salinity concentration (NaCl) and water depth on the growth and morphological characters of Genjer (Limnocharis flava) plants. The study used a completely randomized design (CRD) with 5 replications with a variable depth of water (W) consisting of W0 = 0 cm from the soil surface, W1 = 5 cm from the soil surface, W2 = 10 cm from the soil surface, and treatment of variations in salt concentration. (NaCl) (S) as many as 4 levels, namely S0 = 0 ppm, S1 = 25 ppm, S2 = 50 ppm and S3 = 75 ppm. Statistical analysis with Analysis of Variance (ANOVA) showed the interaction of high NaCl concentration and higher water depth decreased wet weight, dry weight, height, length and width of leaves of L. flava. The concentration of NaCl significantly affects the growth morphology and anatomy of L. flava. The high concentration of NaCl reduced the wet weight, dry weight, height, length and width of the leaves of L. flava. The high concentration of NaCl causes changes in the anatomical structure of L. flava. Water depth significantly affects the growth morphology and anatomy of L. flava. The higher water depth reduces the wet weight, dry weight, height, length and width of the leaves of L. flava. There is an interaction between NaCl concentration and water depth. The high concentration of NaCl and high level of­­ water depth reduced the wet weight, dry weight, height, length and width of the leaves of L. flava.

##plugins.themes.bootstrap3.article.details##

References
Afzal S, Sirohi P, Yadav AK, Singh MP, Kumar A, Singh NK. 2019. A comparative screening of abiotic stress tolerance in early flowering rice mutants. J Biotechnol. 302(June):112–122. doi:10.1016/j.jbiotec.2019.07.003.
Ahmad J, Bashir H, Bagheri R, Baig A, Al-huqail A, Ibrahim M, Qureshi MI. 2017. Drought and salinity induced changes in ecophysiology and proteomic profile of Parthenium hysterophorus. :1–27.
Aldrian E, Karmin M, Budiman. 2011. Adaptasi dan mitigasi perubahan iklim di Indonesia. Jakarta: Badan Meteorologi dan Geofisika (BMKG).
Amzallag GN. 1999. Individuation in Sorghum bicolor: a self-organized process involved in physiological adaptation to salinity. Plant Cell Environ. 22:1389–1399.
Bonilla P, Hirai T, Naito H, Tsuchiya M. 1995. Physiological response to salinity in rice plant. Induced salt-tolerance by low NaCl pretreatment. Japan J Crop Sci. 64:266–272.
Chandran SS, Ramasamy E V. 2015. Utilization of Limnocharis flava , an invasive aquatic weed from Kuttanad wetland ecosystem, Kerala, India as a potential feedstock for livestock. J Anim Feed Res. 5(1):22–27.
Chen FQ. 2009. Survival and growth responses of Myricaria laxiflora seedlings to summer flooding. Aquat Bot. 90:333–338.
Cuartero J, Bolarin MC, Asins MJ, Moreno V. 2006. Increasing salt tolerance in the tomato. J Exp Bot. 57(5):1045–1058.
Gardner FP. 1991. Fisiologi tanaman budidaya. Jakarta: Universitas Indonesia Press.
Grattan SR. 2005. Irrigation water salinity and crop production. ANR Publication 8066. California: University of California Agriculture and Natural Resources in partnership with Natural Resources Conservation Service.
Hairiah KH. 2000. Role of ethylene in acclimations to promote oxygen transport in roots of plants in waterlogged soils. Plant Sci. 175:52–58.
Haryati A. 2006. Rancangan percobaan praktis bidang pertanian. Yogyakarta: Kanisius.
Haryati M, Purnomo T, Sunu K. 2012. Kemampuan tanaman Genjer (Limnocharis Flava (L.)Buch.) menyerap logam berat timbal (Pb) limbah cair kertas pada biomassa dan waktu pemaparan yang berbeda. Lentera Bio. 1(3):131–138.
Hasana R, Miyake H. 2017. Salinity stress alters nutrient uptake and causes the damage of root and leaf anatomy in maize. KnE Life Sci. 3(4):219. doi:10.18502/kls.v3i4.708.
Hastuti TN. Inventarisasi tumbuhan potensial untuk fitoremediasi lahan dan air terdegradasi penambangan emas. J Lab Fisiol Stres, Bid Bot Pus Penelit Biol - LIPI. 6(1):31–33.
Ismail MR, Noor K. 1996. Growth and physiological processes of young starfruit (Averrhoa carambola L.) plants under soil flooding. Sci Hortic. 65:229–238.
Iswadi Y. 2004. Studi pengaruh dosis pupuk kandang ayam dan larutan NaCl terhadap petumbuhan, hasil, dan kualitas tanaman seledri (Apium graveolens L.) yang ditanam dengan teknik vertikultur. Bandung: Departemen Budidaya Petanian, Fakultas Pertanian IPB.
Juhaeti T. 2013. Respon Genjer {Limnocharis flava (L.) Buchenau.} terhadap pemupukan dan potensi gizinya untuk diversifikasi konsumsi sayuran. Ber Biol. 12(1):107–116.
Klepper N. 1991. Plant physiological ecology. New York: Springer Science & Business Media.
Kumar D, Al Hassan M, Naranjo MA, Agrawal V, Boscaiu M, Vicente O. 2017. Effects of salinity and drought on growth, ionic relations, compatible solutes and activation of antioxidant systems in oleander (Nerium oleander L.). PLoS One. 12(9):1–22.
Lakitan B, Iwanaga H, Kartika K, Kriswantoro H, Sakagami JI. 2018. Adaptability to varying water levels and responsiveness to NPK fertilizer in yellow velvetleaf plant (Limnocharis flava). Aust J Crop Sci. 12(11):1757–1764.
Lakitan B, Juliani F, Sodikin E. 2019. Ability of Limnocharis flava to escape from episodic submersion by rapid elongation of its leaf petiole. Bulg J Agric Sci. 25(2):314–319.
Marfai MA. 2011. The hazard of coastal erosion in Central Java Indonesia: an overview. Geogr Malaysia J Soc Sp. 7(3).
Mielke MS. 2010. Photosynthetic and growth responses of Eugenia uniflora L. seedling to soil flooding. Environ Exp Bot. 68:113–121.
Mommer L. 2005. Submergence-induced morphological, anatomical and biochemical responses in a terrestrial species affect gas diffusion resistance and photosynthetic performance. Plant Physiol. 139:497–508.
Nishan MA, George S. 2018. Limnocharis flava (L.) Buchenau: An emerging wetland invader-A review. Agric Rev. 39(3):246–250.
Noorasmah S, Harah ZM, Sidik BJ, Aziz A. Growth performance and production of Limnocharis flava ( L .). Buchenau for vegetable crop. (02):145–160.
Norman AG. Agronomy Vol. 20. New York: Academic Press.
Pangaribuan N. 2001. Hardening dalam upaya mengatasi efek salin pada tanaman, Bayam (Amaranthus sp.).
Phule AS, Barbadikar KM, Madhav MS, Subrahmanyam D, Senguttuvel P, Babu MBBP, Kumar PA. 2019. Studies on root anatomy, morphology and physiology of rice grown under aerobic and anaerobic conditions. Physiol Mol Biol Plants. 25(1):197–205.
Rachmadiarti F, Soehono LA, Utomo WH, Yanuwiyadi B, Fallowfield H. 2012. Resistance of yellow Velvetleaf (Limnocharis flava ( L .) Buch .) Exposed to Lead. J Appl Environ Biol Sci. 2(6):210–215.
Ranawakage VP, Ellawala KC, Chaminda GGT. 2013. Preliminary study on the influence of water level on the growth and morphology of Limnocharis flava (L.) Buchenau. Ann Limnol. 49(4):249–254.
Ranawakage VP, Ellawala KC, Chaminda GGT. 2014. Root and leaf extract allelopathic effect of Limnocharis flava on seed germination and growth of Rice. 10(1):14–17.
Rijal M, Amin M, Rochman F, Suarsini E. 2016. Response growth and the effectiveness of the absorption of heavy metal B-III by Limnochris flava on a scale laboratory. Int J ChemTech Res. 9(6):596–602.
Salsinha YCF, Indradewa D, Purwestri YA, Rachmawati D. 2020. Selection of drought-tolerant local rice cultivars from East Nusa Tenggara, Indonesia during vegetative stage. Biodiversitas. 21(1):170–178.
Salsinha Y, Maryani, Indradewa D, Purwestri Y, Rachmawati D. 2021. Leaf physiological and anatomical characters contribute to drought tolerance of Nusa Tenggara Timur local rice cultivars. J Crop Sci Biotechnol. 24(3):337–348.
Scoffoni C, Vuong C, Diep S, Cochard H, Sack L. 2014. Leaf shrinkage with dehydration: Coordination with hydraulic vulnerability and drought tolerance. Plant Physiol. 164(4):1772–1788.
Serang Y, Laili V. 2021. Measuring the antioxidant effect of Limnocharis flava on malondialdehyde activities in livers of alloxan-induced diabetic rats. J Info Kesehat. 19(2):181–186.
Siti Sundari A, Retnaningdyah C, Soeharjono S. 2013. The effectivity of Scirpus grossus and Limnocharis flava as fitoremediation agents of nitrate-phosphate to prevent Microcystis blooming in fresh water ecosystem. J Trop Life Sci. 3(1):28–33.
Steenis CGGJ. 2006. Flora. Jakarta: Pradnya Paramita.
Sukman Y. 1991. Gulma dan teknik pengendaliannya. Jakarta: Rajawali Press.
Suwignyo R. 2003. Ekologi dan tumbuhan rawa: Kajian fisiologis dan mekanisme toleransi tumbuhan. PT. Pradnya Paramita.
Suwignyo RA, Ehara H, Junaedi A. Current research status on crop tolerance against swampy condition and crop cultivation in swampy areas of Indonesia. 7th Asia Crop Science Conference: “Improving food, energy and environment with better crops”. Bogor: Bogor Agricultural University, IPB Convention Center.
Tjitrosoepomo G. 1993. Taksonomi Umum (Dasar-dasar taksonomi tumbuhan). Yogyakarta: Gadjah Mada University Press.
Wardani N, Elsafira A, Galuh P, Umma L. 2017. Heavy metal phytoremediation agents in industrial wastewater treatment using Limnocharis flava callus. ASEAN/Asian Acad Soc Int Conf Proceeding Ser.:33–37.
Wu J, Wang J, Hui W, Zhao F, Wang P, Su C, Gong W. 2022. Physiology of plant responses to water stress and related genes: A Review. Forests. 13(2).
Zakaria N, Ahmad-Hamdani MS, Juraimi AS. 2018. Patterns of resistance to AHAS inhibitors in Limnocharis flava from Malaysia. Plant Prot Sci. 54(1):48–59.