Molecular identification of mother trees of four matoa cultivars (Pometia pinnata Forst & Forst) from Pekanbaru City, Indonesia using RAPD markers

##plugins.themes.bootstrap3.article.main##

ZULFAHMI
http://orcid.org/0000-0001-6146-9919
SUCI AMALIA PERTIWI
ROSMAINA
RITA ELFIANIS
ZIYAYEVA GULNAR
TULEUBAYEV ZHAXYBAY
MOMBAYEVA BEKZAT
GULSHAT ZHAPARKULOVA

Abstract

Abstract. Zulfahmi, Pertiwi SA, Rosmaina, Elfianis R, Gulnar Z, Zhaxybay T, Bekzat M, Zhaparkulova G. 2023. Molecular identification of mother trees of four matoa cultivars (Pometia pinnata Forst & Forst) from Pekanbaru City, Indonesia using RAPD markers. Biodiversitas 24: 1524-1530. Pekanbaru city has four matoa (Pometia pinnata Forst & Forst) cultivars, i.e. red matoa, yellow matoa, green matoa, and black matoa, but the knowledge of the genetic variation among matoa cultivars is not available. The objective of this study was to assess the genetic variation among matoa cultivars using Random amplified polymorphism DNA (RAPD) markers and to identify the specific marker to distinguish among matoa cultivars. Eighteen primers were initially screened and four matoa cultivars were analyzed with twelve primers using the RAPD marker. The results of this study found that the twelve selected RAPD primers generated 39 fragments, with fragment sizes ranging from 200 to 1500 bp. The percentage of fragment polymorphic was 80.41%, indicating the high genetic variation of the matoa cultivar. The high genetic variation of matoa in this study is caused by cross-pollinated among matoa cultivars in the field. Eleven primers can differentiate four matoa cultivars with specific bands. The obtaining unique bands can be utilized by breeders and farmers as a basis to select the parents for the genetic improvement of Matoa, cultivars or clones protection, detection of seedling purity in a nursery, and to verify the originality of the seedlings that will be cultivated.

##plugins.themes.bootstrap3.article.details##

References
Amiteye S. 2021. Basic concepts and methodologies of DNA marker systems in plant molecular breeding. Heliyon. 7:e08093. doi:10.1016/j.heliyon.2021.e08093
Anggraheni Y, Mulyaningsih E. 2018. Evaluation of Nine Rambutan (Nephelium lappaceum) Varieties Genetic Diversity Using RAPD Markers. Biopropal Industri. 9:1–8.
Antic M, ?uric G, Zeljkovi MK, Bosancic B. 2016. Genetic Diversity of Wild Apples and Pears in the Forest Park of Star?evica, Banja Luka, Bosnia and Herzegovina. Agriculturae Conspectus Scientificus. 81:7.
Atnafu H. 2016. RAPD variation within and among natural populations of African Cherry (Prunus africana) from Ethiopia. American Journal of Life Sciences. 4:31–39. doi:10.11648/j.ajls.20160402.13
Bhadra T, Obaidullah A, Sultana M, Ahmed M, Islam M. 2019. Genetic diversity analysis in cashew (Anacardium occidentale L.) germplasm using RAPD marker. Journal of the Bangladesh Agricultural University. 17:461–465. doi:10.3329/jbau.v17i4.44606
Dobhal S, Sharma S, Ahmed N, Kumar A. 2019. Genetic polymorphism in Dalbergia sissoo Roxb. using RAPD markers. Indian Journal of Biotechnology. 18:164–173.
Doyle JJ, Doyle JL. 1990. Isolation ofplant DNA from fresh tissue. Focus. 12:39–40.
El-Khayat HM. 2019. Comparison of Horticulture Performance and Genetic Diversity Based on RAPD Markers of Some Lemon and lime cvs in Egypt. Middle East Journal of Agriculture. 02:624–637.
El-Khayat HM, Aseel DG. 2020. Horticulture Performance and Genetic Diversity Based on RAPD Marker for some Egyptian Mandarin Cultivars. Journal of ecology of Health & Environment. 8:1–11.
Fadillah J, Mansyurdin, Maideliza T. 2022. Genetic Diversity of Flacourtia rukam Zoll. & Moritzi a Local Fruit Tree Using Random Amplified Polymorphic DNA Markers. Research & Reviews: Research Journal of Biology. 10:1–9. Research & Reviews.
Hannum S, Wahyuningsih H, Sinaga R, Pasaribu N, Hartanto A. 2020. Genetic Diversity Among Durian (Durio zibethinus Murr.) Populations from Nias Island, Indonesia Using RAPD Markers. Applied Ecology and Environmental Research. 18:7337–7351. doi:10.15666/aeer/1805_73377351
Irawan C, Sulistiawaty L, Rochaeni H, Lestari S. 2017. Evaluation of DPPH free radical scavenging activity of Pometia pinnata from Indonesia. The Pharma Innovation Journal. 6:403–406.
Kadir S, Raodah S. 2014. Tanaman Khas Papua (Matoa). Papua: Badan Penelitian dan Pengembangan Teknologi Pertanian Kementerian Pertanian.
Kumar D, Yadav P, Yadav A, Dwivedi UN, Yadav K. 2019. Genetic Diversity Analysis among Papaya (Carica papaya L.) Varieties using RAPD Markers. International Journal of Traditional Medicine and Applications. 1:22–27. doi:10.18689/ijtma-1000105
Kumari N, Thakur SK. 2014. Randomly Amplified Polymorphic DNA-A Brief Review. American Journal of Animal and Veterinary Sciences. 9:6–13. doi:10.3844/ajavsp.2014.6.13
Li J, Gao G, Li B, Li B, Lu Q. 2022. Genetic Analysis of Prunus salicina L. by Random Amplified Polymorphic DNA (RAPD) and Intersimple Sequence Repeat (ISSR). (X. Jin, Ed.)Genetics Research. 2022:1–10. doi:10.1155/2022/2409324
Nadeem MA, Nawaz MA, Shahid MQ, Do?an Y, Comertpay G, Y?ld?z M, Hatipo?lu R, et al. 2018. DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnology & Biotechnological Equipment. 32:261–285. doi:10.1080/13102818.2017.1400401
Pakaya MS, Kai JA, Uno WZ. 2021. Potensi Ekstrak Kulit Buah Matoa (Pometia pinnata J.R Forst & G.Forst) terhadap Bakteri Penyebab Karies Gigi. Jambura Journal of Chemistry. 3:76–83. doi:10.34312/jambchem.v3i2.11204
Poli AR, Katja DG, Aritonang HF. 2022. Potensi Antioksidan Ekstrak dari Kulit Biji Matoa (Pometia pinnata J. R & G. Forst). Chemistry Progress. 15:25–30. doi:10.35799/cp.15.1.2022.43151
Rohlf F. 1998. NTSYSpc: Numerical Taxonomy. Stony Brook: Department of Ecology and Evolution, State University of New York.
Rosmaina, Warino J, Suhaida, Zulfahmi. 2016. Genetic Variability and Relationship Among Durian Cultivars (Durio zibethinus Murr) in the Kampar, Indonesia Assessed by RAPD Markers. Pakistan Journal of Biotechnology. 13:87–94.
Shahzadi K, Naz S, Ilyas S. 2016. Genetic diversity of citrus germplasm in Pakistan based on Random amplified polymorphic DNA (RAPD) markers. The Journal of Animal & Plant Sciences. 26:1094–1100.
Sheet S, Ghosh K, Acharya S, Kim K-P, Lee YS. 2018. Estimating Genetic Conformism of Korean Mulberry Cultivars Using Random Amplified Polymorphic DNA and Inter-Simple Sequence Repeat Profiling. Plants. 7:21. Multidisciplinary Digital Publishing Institute. doi:10.3390/plants7010021
Sidoretno WM, Gustari M. 2021. Aktivitas Antijamur Ekstrak Etanol Daun Matoa (Pometia Pinnata J.R. & G.Forst) Terhadap Pertumbuhan Jamur Trichophyton Mentagrophytes. Photon: Jurnal Sain dan Kesehatan. 11:137–148. doi:10.37859/jp.v11i2.2705
Welsh J, McClelland M. 1990. Fingerprinting genomes using PCR with arbitrary primers. Nucleic Acids Research. 18:7213–7218.
Wiguna IKC, Pharmawati M. 2021. RAPD Primers Selection for Genetic Variation Analysis of Banana Plant (Musa spp.). Jurnal Biologi UNAND. 9:47–53. doi:10.25077/jbioua.9.2.47-53.2021
Williams JG, Kubelik AR, Livak KJ, Rafalski JA, Tingey SV. 1990. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Research. 18:6531–6535.
Yeh F, Yang R, Boyle T. 1999. POPGEN Version 1.31: Microsoft Window Based for population genetic analysis. Edmonton, Alberta, Canada: Department Renewable Resources, University of Alberta.
Zulfahmi Z, Parjanto P, Purwanto E, Yunus A. 2021. Genetic diversity and population structure of Eurycoma apiculata in Eastern Sumatra, Indonesia. Biodiversitas Journal of Biological Diversity. 22:4431–4439. doi:10.13057/biodiv/d221036