Genetic differentiation among Batak fish populations (Neolissochilus sumatranus, Tor douronensis, and Tor soro) in North Sumatra, Indonesia revealed by RAPD markers

##plugins.themes.bootstrap3.article.main##

TERNALA ALEXANDER BARUS
HESTI WAHYUNINGSIH
BERTUA NOVITA SIMANJUNTAK
RISSA HERAWATI GINTING
AGUNG SETIA BATUBARA
ADRIAN HARTANTO

Abstract

Abstract. Barus TA, Wahyuningsih H, Simanjuntak BN, Ginting RH, Batubara AS, Hartanto A. 2023. Genetic differentiation among Batak fish populations (Neolissochilus sumatranus, Tor douronensis, and Tor soro) in North Sumatra, Indonesia was revealed by RAPD markers. Biodiversitas 24: 1327-1332. Mahseer or Batak fish species within the genera of Neolissochilus and Tor are highly valued as a source of food for local communities, especially in North Sumatra. Assessment of genetic differentiation of the Batak fish population, namely Tor soro, Tor douronensis, and Neolissochilus sumatranus in the North Sumatra Rivers, has been conducted. The objective of this study was to determine the possible genetic divergence among congeneric fish and supply the genetic information for the design of conservation strategies. Fish specimens were collected from three rivers in North Sumatra Bahorok River (Langkat District), Asahan River (Toba Samosir District), and Batangtoru River (South Tapanuli District). The genetic analysis employed the Random Amplified Polymorphism DNA (RAPD) markers using a set of RAPD primers: OPA-2, OPA-3, OPA-6, OPA-7, OPA-9, OPA-11, and OPA-17. The amplified fragments were analyzed using the Numerical Taxonomy and Multivariate Analysis System (NTSYS) 2.00 program to construct the dendrogram of relationship among accessions. The genetic similarity coefficient among species of T. soro, T. douronensis, and N. sumatranus reached 0.44-0.86, with the lowest similarity at 44%. The cluster analysis indicated that T. douronensis is more closely related to N. sumatranus than T. soro based on the grouping of accessions. There is an indication of natural hybrids occurrence between N. sumatranus and T. soro populations despite the different habitats and locations of sampling. Our study revealed that using RAPD markers may discriminate inter- and intraspecific Batak fish populations in North Sumatra.

##plugins.themes.bootstrap3.article.details##

References
Ali BA, Huang TH, Qin DN, Wang XM. 2004. A review on random amplified polymorphic DNA (RAPD) markers in fish research. Rev Fish Biol Fisher 14: 443-453. DOI: 10.1007/s11160-005-0815-0
Ali A, Dahanukar N, Philip S, Krishnakumar K, Raghavan R. 2014. Distribution, threats and conservation status of the Wayanad Mahseer, Neolissochilus wynaadensis (Day, 1873) (Teleostei: Cyprinidae): An endemic large barb of the Western Ghats, India. Journal of Threatened Taxa 6(5): 5686-5699. DOI: 10.11609/JoTT.o3901.5686-99
Asih S, Nugroho E, Kristanto AH, Mulyasari M. 2007. Penentuan variasi genetik ikan Batak (Tor soro) dari Sumatera Utara dengan metode analisis Random Amplified Polymorphism DNA (RAPD). Jurnal Riset Akuakultur 3: 91-97. [Indonesian]
Barus TA, Wahyuningsih H, Ginting EM, Simanjuntak CPH. 2014. Ecobiological review of Neolissochilus sumatranus (Ikan batak) (Weber and de Beaufort, 1916) in Asahan River, North Sumatra. In: Proceeding the First International Seminar on Trends in Science and Science Education. Universitas Negeri Medan, Indonesia.
Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Fadli N, Irham M. 2018. Morphometric variations of the Genus Barbonymus (Pisces, Cyprinidae) harvested from Aceh Waters, Indonesia. Fish Aquat Life 26(4): 231-237. DOI: 10.2478/aopf-2018-0026
Batubara AS, Muchlisin ZA, Efizon D, Elvyra R, Fadli N, Rizal S, Siti-Azizah MN, Wilkes M. 2021. DNA barcoding (COI genetic marker) revealed hidden diversity of Cyprinid fish (Barbonymus spp.) from Aceh Waters, Indonesia. Biharean Biolog 15(1): 39-47.
Chaudhry S, Barbhuiya AH. 2010. Neolissochilus hexastichus. The IUCN Red List of Threatened Species 2010: e.T166454A6213128. DOI: 10.2305/IUCN.UK.2020-3.RLTS.T166454A176660612.en
Danish M, Singh IJ, Giri P, Singh CP. 2012. Molecular characterization of two populations of catfish Clarias batrachus L. using random amplified polymorphic DNA (RAPD) markers. Afr J Biotechnol 11(77): 14217-14226. DOI: 10.5897/AJB12.2133
Dinoto A, Handayani R, Setianingrum N, Julistiono H. 2020. Culturable gut bacteria of Ikan Batak (Neolissochilus sumatranus Weber & de Beaufort, 1916) collected in Toba Samosir, Indonesia. Biodiversitas 21(10): 4483-4488. DOI: 10.13057/biodiv/d211003
Gardner EJ, Simmons MJ, Snustad PD. 1991. Population and Evolutionary Genetics. John Wiley and Sons Inc., New York, USA.
Ganaie HA, Ali MN. 2014. Short term protocol for the isolation and purification of DNA for molecular analysis. Int J Pharm Sci Rev Res 24(2): 266-270.
Ho JKI, Ahmad AB. 2019. Neolissochilus hendersoni. The IUCN Red List of Threatened Species 2019: e.T181189A1707888. DOI: 10.2305/IUCN.UK.2019-2.RLTS.T181189A1707888.en
Hoang HD, Pham HM, Durand JD, Tran NT, Phan PD. 2015. Mahseers genera Tor and Neolissochilus (Teleostei: cyprinidae) from southern Vietnam. Zootaxa 4006(3): 551-568. DOI: 10.11646/zootaxa.4006.3.8
Ikpeme EV, Udensi OU, Ekaluo UB, Kooffreh ME, Okolo CM, Ekpo PB, Ogbonna NC. 2015. Unveiling the genetic diversity in Clarias gariepinus (Burchell, 1822) using random amplified polymorphic dna (rapd) fingerprinting technique. Asian J Animal Sci 9(5): 187-197. DOI: 10.3923/ajas.2015.187.197
Khaironizam MZ, Akaria-Ismail M, Armbruster JW. 2015. Cyprinid fishes of the genus Neolissochilus in Peninsular Malaysia. Zootaxa 3962(1): 139-157. DOI: 10.11646/zootaxa.3962.1.7
Kottelat M, Whitten AJ, Kartikasari SN, Wirjoatmodjo S. 1993. Freshwater Fishes of Western Indonesia and Sulawesi. Periplus Editions Limited, Hong Kong.
Kottelat M. 2013. The fishes of the inland waters of Southeast Asia: a catalogue and core bibliography of the fishes known to occur in freshwaters, mangroves and estuaries. Raffles Bull Zool 27: 1-663.
Kottelat M. 2020. Neolissochilus blanci. The IUCN Red List of Threatened Species 2020: e.T188085A176660224. DOI: 10.2305/IUCN.UK.2020-3.RLTS.T188085A176660224.en
Larashati S, Sulastri, Ridwansyah I, Afandi AY, Novianti R. 2020. Conservation efforts of ikan Batak (Tor spp. and Neolissochilus spp.) and its prospects to support ecotourism in Samosir Regency, North Sumatra Indonesia. IOP Conf Ser Earth Environ Sci 535: 012041. DOI: 10.1088/1755-1315/535/1/012041
Lutz ML, Sunnucks P, Chapple DG, Gilligan D, Lintermans M, Pavlova A. 2022. Strong bidirectional gene flow between fish lineages separated for over 100,000 years. Conserv Gene. DOI: 10.1007/s10592-022-01476-0
Manimekalan A, Dahanukar N, Raghavan R, Ali A. 2015. Neolissochilus bovanicus. The IUCN Red List of Threatened Species 2015: e.T172431A79816276. DOI: 10.2305/IUCN.UK.2015-3.RLTS.T172431A79816276.en
Nevado B, Mautner S, Sturmbauer C, Verheyen E. 2013. Water?level fluctuations and metapopulation dynamics as drivers of genetic diversity in populations of three Tanganyikan cichlid fish species. Mol Ecol 22: 3933-3948. DOI: 10.1111/mec.12374
Neekhra B, Mansoori AA, Verma S, Koiri RK, Jain SK. 2014. RAPD-PCR based biomarker study in fish species (Family: Cyprinidae) of Madhya Pradesh, India. Austin J Mol Cell Biol 1(1): 1003.
Nicol E, Stevens, JR, Jobling S. 2017. Riverine fish diversity varies according to geographical isolation and land use modification. Ecol Evol 7: 7872-7883. DOI: 10.1002/ece3.3237
Nugroho E, Soewardi K, Kurniawirawan A. 2007. Analisis keragaman genetik beberapa populasi ikan Batak (Tor soro) dengan metode random amplified polymorphism DNA (RAPD). Jurnal Ilmu-ilmu Perairan dan Perikanan Indonesia 14: 53-57. [Indonesian]
Pasztor L, Botta-Dukat Z, Magyar G, Czaran T, Meszena G. 2016. Ecological tolerance and the distribution of species. DOI: 10.1093/acprof:oso/9780199577859.003.0005
Prianto E, Puspasari R, Oktaviani D, Aisyah A. 2017. Status pemanfaatan dan upaya pelestarian ikan endemik air tawar di Pulau Sumatera. Jurnal Kebijakan Perikanan Indonesia 8(2): 101-110. DOI: 10.15578/jkpi.8.2.2016.101-110
Purba M, Barus TA, Ilyas S. 2013. Hubungan antara kualitas air dengan kebiasaan makanan ikan Batak (Neolissochilus sumatranus) di Sungai Asahan, Sumatera Utara. Jurnal Biosains 1(2): 21-28. DOI: 10.24114/jbio.v1i2.12729
Roesma DI, Chornelia A, Mursyid A. 2019. Phenotype analysis of endemic mahseer fish (Neolissochilus sumatranus) from Batang Toru tributaries, North Sumatra, Indonesia. J Phys Conf Ser 1317: 012099. DOI: 10.1088/1742-6596/1317/1/012099
Sahoo PK, Goel C, Kumar R, Dhama N, Ali S, Sarma D, Nanda P, Barat A. 2015. The complete mitochondrial genome of threatened chocolate mahseer (Neolissochilus hexagonolepis) and its phylogeny. Gene 570(2): 299-303. DOI: 10.1016/j.gene.2015.07.024
Simanjuntak BN, Wahyuningsih H, Hannum S. 2018. Morphological and genetic analysis of batak fish (Tor soro) in North Sumatera. J Phys Conf Ser 1116: 052061. DOI: 10.1088/1742-6596/1116/5/052061
Suresh E, Tiwari VK, Sekar M, Sankar M, Kathirvelpandian A. 2013. Genetic structure of populations of Mugil cephalus using RAPD markers. Afr J Biotechnol 12(44): 6262-6266. DOI: 10.5897/AJB2013.12302
Tan MP, Jamsari AF, Siti-Azizah MN. 2012. Phylogeographic pattern of the striped snakehead, Channa striata in Sundaland: ancient river connectivity, geographical and anthropogenic signatures. PLos One 7(12): e52089. DOI: 10.1371/journal.pone.0052089
Vidthayanon C. 2012. Neolissochilus vittatus. The IUCN Red List of Threatened Species 2012: e.T181301A1719330. DOI: 10.2305/IUCN.UK.2012-1.RLTS.T181301A1719330.en
Weber M, de Beaufort LF. 1916. The Fishes of Indo-Australian Archipelago. E. J. Brill, Netherlands.
Wellband KW, Pettitt?Wade H, Fisk AT, Heath DD. 2018. Standing genetic diversity and selection at functional gene loci are associated with differential invasion success in two non?native fish species. Mol Ecol 27: 1572-1585. DOI: 10.1111/mec.14557
Yulianto D, Indra I, Batubara AS, Fadli N, Nur FM, Rizal S, Siti-Azizah MN, Muchlisin ZA. 2020. Morphometrics and genetics variations of mullets (Pisces: Mugillidae) from Aceh waters. Indonesia. Biodiversitas 21(8): 3422-3430. DOI: 10.13057/biodiv/d210802

Most read articles by the same author(s)

1 2 > >>